cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212744 Number of (w,x,y,z) with all terms in {0,...,n} and w=max{w,x,y,z}-min{w,x,y,z}; i.e., the range of (w,x,y,z) is its first term.

Original entry on oeis.org

1, 8, 34, 83, 181, 314, 532, 791, 1177, 1604, 2206, 2843, 3709, 4598, 5776, 6959, 8497, 10016, 11962, 13859, 16261, 18578, 21484, 24263, 27721, 31004, 35062, 38891, 43597, 48014, 53416, 58463, 64609, 70328, 77266, 83699, 91477, 98666, 107332, 115319, 124921
Offset: 0

Views

Author

Clark Kimberling, May 26 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w == Max[w, x, y, z] - Min[w, x, y, z],
      s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212744 *)
  • PARI
    Vec((1+x+x^2)*(x^4+6*x^3+16*x^2+6*x+1)/((1+x)^3*(x-1)^4) + O(x^100)) \\ Colin Barker, Jan 28 2016

Formula

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: (1+x+x^2)*(x^4+6*x^3+16*x^2+6*x+1) / ((1+x)^3*(x-1)^4).
From Colin Barker, Jan 28 2016: (Start)
a(n) = (30*n^3+3*((-1)^n+15)*n^2+3*((-1)^n+15)*n+(-1)^n+15)/16.
a(n) = (15*n^3+24*n^2+24*n+8)/8 for n even.
a(n) = (15*n^3+21*n^2+21*n+7)/8 for n odd.
(End)