This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212766 #15 Jan 05 2025 05:53:34 %S A212766 0,4,18,64,150,324,588,1024,1620,2500,3630,5184,7098,9604,12600,16384, %T A212766 20808,26244,32490,40000,48510,58564,69828,82944,97500,114244,132678, %U A212766 153664,176610,202500,230640,262144,296208,334084,374850 %N A212766 Number of (w,x,y,z) with all terms in {0,...,n}, w even and x odd. %C A212766 Every term is even. %C A212766 For a guide to related sequences, see A211795. %H A212766 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-6,0,6,-2,-2,1). %F A212766 a(n) = 2*a(n-1)+2*a(n-2)-6*a(n-3)+6*a(n-5)-2*a(n-6)-2*a(n-7)+a(n-8). %F A212766 G.f.: -2*x*(2+5*x+10*x^2+5*x^3+2*x^4) / ( (1+x)^3*(x-1)^5 ). %F A212766 a(n) = (2n(n+2)-(-1)^n+1)(n+1)^2/8. [_Bruno Berselli_, Jun 11 2012] %t A212766 t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[(Mod[w, 2] == 0) && (Mod[x, 2] == 1), s++], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]]; %t A212766 Map[t[#] &, Range[0, 40]] (* A212766 *) %t A212766 %/2 (* integers *) %t A212766 LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 4, 18, 64, 150, 324, 588, 1024}, 40] %Y A212766 Cf. A211795. %K A212766 nonn,easy %O A212766 0,2 %A A212766 _Clark Kimberling_, May 29 2012