This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212775 #17 Feb 28 2017 22:54:57 %S A212775 2,4,36,692004,114788185359199234852802340 %N A212775 Number of partitions of 2^(2^n) into powers of 2. %C A212775 Lengths (in decimal digits) of the terms a(0), a(1), ... are: 1, 1, 2, 6, 27, 119, 525, 2241, 9330, ... . %H A212775 Alois P. Heinz, <a href="/A212775/b212775.txt">Table of n, a(n) for n = 0..6</a> %F A212775 a(n) = [x^2^(2^n-1)] 1/(1-x) * 1/Product_{j=0..2^n-1} (1-x^(2^j)). %e A212775 a(0) = 2 because the number of partitions of 2^2^0 = 2 into powers of 2 is 2: [2], [1,1]. %e A212775 a(1) = 4: [4], [2,2], [2,1,1], [1,1,1,1]. %p A212775 b:= proc(n, j) option remember; local nn, r; %p A212775 if n<0 then 0 %p A212775 elif j=0 then 1 %p A212775 elif j=1 then n+1 %p A212775 elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1) %p A212775 else nn:= 1 +floor(n); %p A212775 r:= n-nn; %p A212775 (nn-j) *binomial(nn, j) *add(binomial(j, h) %p A212775 /(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1) %p A212775 fi %p A212775 end: %p A212775 a:= n-> b(1, 2^n): %p A212775 seq(a(n), n=0..6); %t A212775 b[n_, j_] := b[n, j] = Module[{nn, r}, Which[n<0, 0, j==0, 1, j==1, n+1, n < j, b[n, j] = b[n-1, j] + b[2*n, j-1], True, nn = 1+Floor[n]; r = n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_] := b[1, 2^n]; Table[a[n], {n, 0, 6}] (* _Jean-François Alcover_, Feb 28 2017, translated from Maple *) %Y A212775 Cf. A000123, A002577, A172288, A182135. %K A212775 nonn %O A212775 0,1 %A A212775 _Alois P. Heinz_, May 26 2012