cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A212776 Half the number of 0..2 arrays of length n+2 with second differences nonzero.

Original entry on oeis.org

11, 27, 66, 162, 397, 973, 2385, 5846, 14329, 35122, 86088, 211011, 517211, 1267741, 3107372, 7616509, 18668898, 45759514, 112161581, 274920321, 673859821, 1651704234, 4048508001, 9923336574, 24323184920, 59618790539, 146132186103
Offset: 1

Views

Author

R. H. Hardin May 27 2012

Keywords

Comments

Column 2 of A212782

Examples

			Some solutions for n=5
..2....0....1....1....1....2....0....1....0....0....1....2....0....0....1....2
..0....2....1....2....1....2....1....2....2....2....2....1....2....0....0....0
..0....1....0....0....0....1....0....1....0....1....1....1....0....2....2....0
..1....2....0....1....1....1....2....2....0....2....2....2....2....1....0....2
..1....0....2....1....0....0....1....0....1....0....0....0....0....1....1....0
..2....1....1....0....2....0....2....1....0....2....2....1....2....0....0....1
..0....1....2....0....1....1....1....0....0....2....1....0....1....2....1....1
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +3*a(n-3) +2*a(n-4).
Empirical: G.f. -x*(11+16*x+17*x^2+9*x^3) / ( -1+x+2*x^2+3*x^3+2*x^4 ). - R. J. Mathar, Jul 01 2013

A212777 Half the number of 0..3 arrays of length n+2 with second differences nonzero.

Original entry on oeis.org

28, 99, 350, 1238, 4379, 15490, 54793, 193821, 685609, 2425226, 8578828, 30346157, 107344412, 379712753, 1343169821, 4751236703, 16806698494, 59450861306, 210297394895, 743891565706, 2631390949017, 9308101672049, 32925839761497
Offset: 1

Views

Author

R. H. Hardin, May 27 2012

Keywords

Comments

Column 3 of A212782.

Examples

			Some solutions for n=5:
..3....0....3....3....3....3....2....2....3....3....1....3....1....3....0....0
..1....3....1....2....3....3....2....2....2....3....0....1....0....1....1....1
..3....0....0....3....1....1....0....0....3....0....1....3....2....1....3....0
..1....0....1....0....2....0....3....1....3....3....3....2....2....3....1....3
..1....3....0....1....2....0....0....3....2....3....2....3....1....3....0....3
..2....3....1....0....0....1....2....2....2....0....0....0....2....0....0....1
..1....1....1....1....1....0....3....2....0....1....3....2....2....3....1....3
		

Crossrefs

Cf. A212782.

Formula

Empirical: a(n) = 2*a(n-1) + 5*a(n-2) + 3*a(n-3) - 4*a(n-4) - 4*a(n-5).
Empirical g.f.: x*(28 + 43*x + 12*x^2 - 41*x^3 - 32*x^4) / (1 - 2*x - 5*x^2 - 3*x^3 + 4*x^4 + 4*x^5). - Colin Barker, Jul 21 2018

A212778 Half the number of 0..4 arrays of length n+2 with second differences nonzero.

Original entry on oeis.org

56, 252, 1134, 5104, 22972, 103391, 465336, 2094360, 9426184, 42424863, 190943548, 859388488, 3867889651, 17408390437, 78350750657, 352636859298, 1587129076523, 7143265484325, 32150026443551, 144699115914141, 651254025656788
Offset: 1

Views

Author

R. H. Hardin, May 27 2012

Keywords

Comments

Column 4 of A212782.

Examples

			Some solutions for n=5:
..3....3....3....0....3....3....0....4....0....3....2....2....1....0....1....4
..3....3....0....4....4....0....4....0....1....2....0....2....3....0....0....3
..2....0....3....0....4....1....3....3....1....2....3....4....2....4....1....1
..2....4....1....0....2....0....1....0....2....4....4....2....2....3....3....0
..3....3....3....1....4....4....2....3....4....2....1....1....0....0....3....2
..2....4....2....3....4....4....2....3....2....4....4....1....4....0....4....3
..4....1....2....0....0....2....0....0....2....0....4....4....3....3....0....1
		

Crossrefs

Cf. A212782.

Formula

Empirical: a(n) = 2*a(n-1) + 7*a(n-2) + 14*a(n-3) + 19*a(n-4) + 18*a(n-5) + 5*a(n-6) - 5*a(n-7) - 2*a(n-8).
Empirical g.f.: x*(56 + 140*x + 238*x^2 + 288*x^3 + 234*x^4 + 47*x^5 - 68*x^6 - 25*x^7) / (1 - 2*x - 7*x^2 - 14*x^3 - 19*x^4 - 18*x^5 - 5*x^6 + 5*x^7 + 2*x^8). - Colin Barker, Jul 21 2018

A212779 Half the number of 0..5 arrays of length n+2 with second differences nonzero.

Original entry on oeis.org

99, 546, 3010, 16594, 91482, 504337, 2780392, 15328203, 84503842, 465866699, 2568306672, 14158984054, 78057979457, 430330886291, 2372398990909, 13078951921338, 72103800421506, 397505707375713, 2191434937861300
Offset: 1

Views

Author

R. H. Hardin, May 27 2012

Keywords

Comments

Column 5 of A212782.

Examples

			Some solutions for n=5
..3....0....4....3....1....1....3....1....4....1....4....3....4....0....3....3
..0....1....0....4....0....0....4....4....0....3....0....4....1....3....4....0
..2....5....3....1....1....1....4....3....5....4....5....1....2....3....4....0
..3....0....3....5....3....5....1....3....5....1....3....5....0....5....5....2
..3....1....5....2....3....5....3....1....0....1....3....5....4....4....5....0
..5....5....2....5....5....0....2....5....2....0....5....2....5....2....0....5
..2....1....0....2....5....2....5....2....0....2....0....0....4....2....3....0
		

Crossrefs

Cf. A212782.

Formula

Empirical: a(n) = 3*a(n-1) +12*a(n-2) +12*a(n-3) -6*a(n-4) -18*a(n-5) -14*a(n-6) -11*a(n-7) -16*a(n-8) -11*a(n-9) -a(n-10).

A212780 Half the number of 0..6 arrays of length n+2 with second differences nonzero.

Original entry on oeis.org

159, 1034, 6724, 43727, 284360, 1849215, 12025596, 78203437, 508563345, 3307229006, 21507180645, 139862954332, 909540228150, 5914814473647, 38464522156756, 250137932701244, 1626667429300337, 10578351299907331
Offset: 1

Views

Author

R. H. Hardin May 27 2012

Keywords

Comments

Column 6 of A212782

Examples

			Some solutions for n=5
..0....0....3....0....0....0....0....0....0....4....0....4....0....0....0....0
..4....2....0....0....0....3....5....4....0....0....6....0....5....5....1....6
..6....2....4....2....2....0....0....1....3....1....6....0....0....1....3....4
..3....5....6....0....3....1....4....4....0....0....2....5....2....1....6....4
..2....1....1....3....2....3....4....6....6....5....1....1....5....0....4....1
..6....2....6....1....6....3....3....1....0....6....4....2....2....1....3....1
..2....0....3....1....4....1....6....5....6....1....3....1....2....4....0....0
		

Formula

Empirical: a(n) = 3*a(n-1) +15*a(n-2) +39*a(n-3) +66*a(n-4) +65*a(n-5) -3*a(n-6) -107*a(n-7) -162*a(n-8) -136*a(n-9) -96*a(n-10) -71*a(n-11) -31*a(n-12) -4*a(n-13)

A212781 Half the number of 0..7 arrays of length n+2 with second differences nonzero.

Original entry on oeis.org

240, 1803, 13544, 101743, 764297, 5741427, 43129809, 323992699, 2433844978, 18283132290, 137343556947, 1031729811702, 7750391995200, 58221227493827, 437359985531993, 3285464171376777, 24680526747938834, 185401017567775934
Offset: 1

Views

Author

R. H. Hardin May 27 2012

Keywords

Comments

Column 7 of A212782

Examples

			Some solutions for n=5
..1....0....1....0....1....1....1....1....0....0....0....0....1....1....0....0
..4....0....6....2....4....0....4....6....4....6....0....6....0....6....0....0
..6....7....7....6....3....6....1....1....2....5....5....5....1....2....5....4
..0....6....6....2....0....6....2....2....4....2....1....0....5....4....2....6
..0....3....0....7....1....7....0....4....0....1....4....3....1....5....5....1
..1....3....4....0....6....5....5....7....3....1....4....3....0....0....6....6
..4....6....5....6....4....5....4....4....5....7....5....0....6....7....4....4
		

Formula

Empirical: a(n) = 4*a(n-1) +22*a(n-2) +33*a(n-3) +5*a(n-4) -36*a(n-5) -40*a(n-6) -28*a(n-7) -53*a(n-8) -73*a(n-9) -37*a(n-10) +12*a(n-11) +32*a(n-12) +39*a(n-13) +28*a(n-14) +6*a(n-15)

A212783 Half the number of 0..n arrays of length 4 with second differences nonzero.

Original entry on oeis.org

5, 27, 99, 252, 546, 1034, 1803, 2925, 4517, 6670, 9528, 13204, 17869, 23655, 30763, 39344, 49626, 61782, 76067, 92673, 111885, 133914, 159072, 187592, 219813, 255987, 296483, 341572, 391650, 447010, 508075, 575157, 648709, 729062, 816696, 911964
Offset: 1

Views

Author

R. H. Hardin, May 27 2012

Keywords

Comments

Row 2 of A212782.

Examples

			Some solutions for n=5:
..5....4....2....3....5....4....0....4....2....4....2....1....5....1....4....4
..4....5....2....4....1....2....1....0....3....1....2....4....0....0....4....5
..1....0....1....0....3....5....1....2....1....4....5....2....2....1....0....5
..0....4....4....3....4....2....3....0....0....3....3....1....2....3....0....3
		

Crossrefs

Cf. A212782.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) - a(n-4) + a(n-5) + 3*a(n-6) - a(n-7) - 2*a(n-8) + a(n-9).
Empirical g.f.: x*(5 + 17*x + 40*x^2 + 42*x^3 + 29*x^4 + 9*x^5 + 2*x^6) / ((1 - x)^5*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jul 21 2018

A212784 Half the number of 0..n arrays of length 5 with second differences nonzero.

Original entry on oeis.org

8, 66, 350, 1134, 3010, 6724, 13544, 24870, 42952, 70060, 109638, 165098, 241342, 343074, 476992, 649304, 868684, 1143156, 1483630, 1900056, 2405958, 3013428, 3738744, 4596484, 5605944, 6784266, 8154174, 9735586, 11554762, 13634780
Offset: 1

Views

Author

R. H. Hardin May 27 2012

Keywords

Comments

Row 3 of A212782

Examples

			Some solutions for n=5
..4....0....0....5....0....3....0....5....1....2....1....2....2....2....2....0
..2....1....2....5....3....2....3....1....3....2....0....3....4....5....5....5
..1....1....2....1....2....4....4....2....2....5....2....1....2....3....0....5
..5....2....3....4....2....3....2....5....0....1....0....5....1....0....0....0
..1....0....3....3....4....4....1....1....3....4....0....4....1....4....5....3
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -2*a(n-4) -4*a(n-5) +a(n-6) +3*a(n-7) +3*a(n-8) +a(n-9) -4*a(n-10) -2*a(n-11) +2*a(n-13) +a(n-14) -a(n-15)

A212785 Half the number of 0..n arrays of length 6 with second differences nonzero.

Original entry on oeis.org

13, 162, 1238, 5104, 16594, 43727, 101743, 211461, 408430, 735896, 1261599, 2064329, 3259612, 4975687, 7395946, 10715635, 15205983, 21151890, 28937100, 38956477, 51737361, 67810309, 87873466, 112625630, 142969752, 179799242
Offset: 1

Views

Author

R. H. Hardin May 27 2012

Keywords

Comments

Row 4 of A212782

Examples

			Some solutions for n=5
..2....2....5....1....3....3....5....4....0....5....3....3....3....4....2....2
..0....4....1....4....5....0....2....0....1....4....5....4....4....3....5....1
..5....3....3....5....3....3....0....0....1....1....1....0....4....5....4....3
..4....3....2....3....4....5....0....5....0....5....3....4....1....0....0....2
..0....1....4....5....4....2....1....4....5....2....2....3....0....5....3....2
..5....2....1....4....5....3....0....5....3....5....4....1....0....5....5....5
		

Formula

Empirical: a(n) = a(n-2) +2*a(n-3) +2*a(n-4) -a(n-5) -2*a(n-6) -5*a(n-7) -3*a(n-8) +3*a(n-10) +6*a(n-11) +5*a(n-12) +3*a(n-13) -3*a(n-14) -5*a(n-15) -6*a(n-16) -3*a(n-17) +3*a(n-19) +5*a(n-20) +2*a(n-21) +a(n-22) -2*a(n-23) -2*a(n-24) -a(n-25) +a(n-27)

A212786 Half the number of 0..n arrays of length 7 with second differences nonzero.

Original entry on oeis.org

21, 397, 4379, 22972, 91482, 284360, 764297, 1797975, 3883755, 7729696, 14517156, 25811656, 44024953, 72163603, 114677011, 176842932, 266174946, 391374778, 564396617, 798717009, 1112552471, 1525915970, 2065331568, 2759616340
Offset: 1

Views

Author

R. H. Hardin May 27 2012

Keywords

Comments

Row 5 of A212782

Examples

			Some solutions for n=5
..3....1....0....1....3....3....1....0....1....0....4....3....0....1....4....0
..3....1....0....4....5....2....0....5....3....1....0....1....1....1....4....5
..5....0....4....2....1....2....2....3....3....5....1....3....5....5....0....2
..1....1....3....1....2....4....2....2....1....3....4....0....4....1....1....3
..5....0....0....5....1....0....5....4....3....4....4....4....1....2....1....5
..1....4....4....4....2....0....5....3....4....0....3....2....0....4....5....0
..4....4....3....1....0....5....1....5....1....0....5....5....0....0....2....1
		

Formula

Empirical: a(n) = -a(n-1) -a(n-2) +a(n-3) +4*a(n-4) +6*a(n-5) +7*a(n-6) +a(n-7) -6*a(n-8) -16*a(n-9) -20*a(n-10) -16*a(n-11) -2*a(n-12) +18*a(n-13) +32*a(n-14) +38*a(n-15) +24*a(n-16) +2*a(n-17) -27*a(n-18) -43*a(n-19) -43*a(n-20) -27*a(n-21) +2*a(n-22) +24*a(n-23) +38*a(n-24) +32*a(n-25) +18*a(n-26) -2*a(n-27) -16*a(n-28) -20*a(n-29) -16*a(n-30) -6*a(n-31) +a(n-32) +7*a(n-33) +6*a(n-34) +4*a(n-35) +a(n-36) -a(n-37) -a(n-38) -a(n-39)
Showing 1-10 of 12 results. Next