A212809 Decimal expansion of radius of convergence of g.f. for unlabeled trees (A000055).
3, 3, 8, 3, 2, 1, 8, 5, 6, 8, 9, 9, 2, 0, 7, 6, 9, 5, 1, 9, 6, 1, 1, 2, 6, 2, 5, 7, 1, 7, 0, 1, 7, 0, 5, 3, 1, 8, 3, 7, 7, 4, 6, 0, 7, 5, 3, 2, 9, 6, 7, 7, 9, 5, 5, 7, 2, 3, 0, 3, 7, 7, 6, 2, 5, 7, 6, 6, 6, 0, 5, 0, 1, 8, 9, 6, 2, 0, 7, 6, 6, 5, 6, 3, 5, 2, 8, 7, 9, 8, 3, 6, 7, 3
Offset: 0
Examples
0.338321856899208...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 296.
Links
- Michael Drmota and Bernhard Gittenberger, The shape of unlabeled rooted random trees, Eur. J. Comb. 31 (2010) no 8, 2028-2063.
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
Crossrefs
Cf. A000055.
Programs
-
Mathematica
digits = 95; max = 200; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n - 1, k]*k, {k, 1, n - 1}]/(n - 1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; r = 1/c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5]; RealDigits[r, 10, digits] // First (* Jean-François Alcover, Aug 10 2016 *)
Formula
Equals 1/A051491. - Vaclav Kotesovec, Jul 29 2013
Extensions
More terms from Vaclav Kotesovec, Jul 29 2013