cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212809 Decimal expansion of radius of convergence of g.f. for unlabeled trees (A000055).

Original entry on oeis.org

3, 3, 8, 3, 2, 1, 8, 5, 6, 8, 9, 9, 2, 0, 7, 6, 9, 5, 1, 9, 6, 1, 1, 2, 6, 2, 5, 7, 1, 7, 0, 1, 7, 0, 5, 3, 1, 8, 3, 7, 7, 4, 6, 0, 7, 5, 3, 2, 9, 6, 7, 7, 9, 5, 5, 7, 2, 3, 0, 3, 7, 7, 6, 2, 5, 7, 6, 6, 6, 0, 5, 0, 1, 8, 9, 6, 2, 0, 7, 6, 6, 5, 6, 3, 5, 2, 8, 7, 9, 8, 3, 6, 7, 3
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2012

Keywords

Examples

			0.338321856899208...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.6, p. 296.

Crossrefs

Cf. A000055.

Programs

  • Mathematica
    digits = 95; max = 200;
    s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n - k, k]];
    a[1] = 1;
    a[n_] := a[n] = Sum[a[k]*s[n - 1, k]*k, {k, 1, n - 1}]/(n - 1);
    A[x_] := Sum[a[k]*x^k, {k, 0, max}];
    eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}];
    r = 1/c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5];
    RealDigits[r, 10, digits] // First (* Jean-François Alcover, Aug 10 2016 *)

Formula

Equals 1/A051491. - Vaclav Kotesovec, Jul 29 2013

Extensions

More terms from Vaclav Kotesovec, Jul 29 2013