A212826 Number of 0..5 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..5 order.
1, 2, 5, 13, 44, 168, 716, 3331, 16599, 87059, 473569, 2641428, 14982656, 85930423, 496412949, 2881216925, 16773626497, 97843056510, 571457023718, 3340356838651, 19535838889479, 114293073644447, 668811749036809, 3914263576403496
Offset: 1
Keywords
Examples
Some solutions for n=8: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..0....1....1....1....0....1....1....1....1....1....1....1....1....1....1....1 ..1....2....1....2....0....1....1....2....0....1....2....2....0....1....2....1 ..0....3....2....0....1....2....2....3....2....2....1....3....2....2....3....0 ..2....3....3....0....0....3....3....0....1....1....0....2....2....3....4....2 ..3....4....1....0....2....4....2....2....1....0....3....1....2....4....5....3 ..1....3....2....1....2....2....4....3....3....0....2....0....3....3....4....2 ..1....3....3....1....3....4....3....3....1....2....1....2....1....5....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A212829.
Formula
Empirical: a(n) = 11*a(n-1) - 30*a(n-2) - 21*a(n-3) + 112*a(n-4) + 63*a(n-5) - 119*a(n-6) - 120*a(n-7) - 30*a(n-8) for n>11.
Empirical g.f.: x*(1 + x + x^2)*(1 - 10*x + 22*x^2 + 27*x^3 - 68*x^4 - 67*x^5 + 29*x^6 + 44*x^7 + 11*x^8) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 3*x - 3*x^2)*(1 - 5*x - 5*x^2)). - Colin Barker, Jul 21 2018
Comments