cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A212823 Number of 0..2 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..2 order.

Original entry on oeis.org

1, 2, 5, 12, 33, 90, 246, 672, 1836, 5016, 13704, 37440, 102288, 279456, 763488, 2085888, 5698752, 15569280, 42536064, 116210688, 317493504, 867408384, 2369803776, 6474424320, 17688456192, 48325761024, 132028434432, 360708390912
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 2 of A212829.

Examples

			Some solutions for n=8:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....0....1....1....1....0....1....1....1....1....1
..2....2....1....2....2....2....0....0....2....1....1....1....0....0....2....2
..1....0....0....2....2....0....1....2....0....1....2....2....2....0....0....0
..0....0....2....2....0....1....2....1....0....2....2....0....1....1....2....2
..0....1....0....0....1....1....2....0....0....0....0....0....0....2....2....2
..1....0....0....2....0....0....1....0....1....0....0....1....2....2....0....2
..1....0....1....2....0....2....2....0....1....0....2....0....1....0....1....0
		

Crossrefs

Cf. A212829.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) for n>5.
Empirical g.f.: x*(1 - x - x^2)*(1 + x + x^2) / (1 - 2*x - 2*x^2). - Colin Barker, Jul 21 2018

A212824 Number of 0..3 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..3 order.

Original entry on oeis.org

1, 2, 5, 13, 43, 152, 559, 2091, 7882, 29809, 112895, 427824, 1621691, 6147791, 23307226, 88363077, 335007715, 1270107208, 4815336407, 18256317315, 69214939274, 262413734345, 994885963543, 3771899000928, 14300354743363
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 3 of A212829.

Examples

			Some solutions for n=8:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....1....1....1....1....1....1....1....1....0....1....1....1....0....1....1
..1....2....0....1....0....1....2....2....1....1....1....2....2....1....1....2
..2....3....2....2....2....2....0....0....2....2....0....3....2....2....0....2
..2....0....0....2....2....2....3....2....2....3....2....2....2....3....1....3
..0....2....3....3....3....0....2....1....0....1....3....1....0....3....1....1
..1....2....2....3....1....0....2....0....2....2....3....3....3....2....1....0
..1....0....1....2....0....0....1....3....3....0....2....1....0....0....2....0
		

Crossrefs

Cf. A212829.

Formula

Empirical: a(n) = 4*a(n-1) + a(n-2) - 6*a(n-3) - 3*a(n-4) for n>7.
Empirical g.f.: x*(1 + x + x^2)*(1 - 3*x - 2*x^2 + 2*x^3 + x^4) / ((1 - x - x^2)*(1 - 3*x - 3*x^2)). - Colin Barker, Jul 21 2018

A212825 Number of 0..4 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..4 order.

Original entry on oeis.org

1, 2, 5, 13, 44, 167, 695, 3070, 14074, 65958, 313098, 1497216, 7189646, 34606966, 166803484, 804596882, 3882748894, 18741593296, 90476092366, 436812623774, 2108996095916, 10182801139146, 49166003981046, 237391983175872
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 4 of A212829.

Examples

			Some solutions for n=8:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....0....1....1....0....1....1....1....1....1....1
..2....2....2....2....2....2....1....2....2....1....2....2....0....0....1....1
..3....1....3....1....2....0....2....3....2....0....1....3....2....2....0....2
..4....0....0....1....0....3....2....1....0....2....1....2....0....0....1....2
..3....2....0....2....2....4....1....1....0....0....1....1....0....3....2....1
..0....2....2....2....2....2....0....0....1....3....3....1....2....1....3....2
..4....2....0....2....0....1....1....2....3....4....3....2....3....0....4....3
		

Crossrefs

Cf. A212829.

Formula

Empirical: a(n) = 7*a(n-1) - 7*a(n-2) - 20*a(n-3) + 10*a(n-4) + 24*a(n-5) + 8*a(n-6) for n>9.
Empirical g.f.: x*(1 + x + x^2)*(1 - 6*x + 3*x^2 + 15*x^3 - 9*x^5 - 3*x^6) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 4*x - 4*x^2)). - Colin Barker, Jul 21 2018

A212826 Number of 0..5 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..5 order.

Original entry on oeis.org

1, 2, 5, 13, 44, 168, 716, 3331, 16599, 87059, 473569, 2641428, 14982656, 85930423, 496412949, 2881216925, 16773626497, 97843056510, 571457023718, 3340356838651, 19535838889479, 114293073644447, 668811749036809, 3914263576403496
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Column 5 of A212829.

Examples

			Some solutions for n=8:
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....1....1....1....0....1....1....1....1....1....1....1....1....1....1....1
..1....2....1....2....0....1....1....2....0....1....2....2....0....1....2....1
..0....3....2....0....1....2....2....3....2....2....1....3....2....2....3....0
..2....3....3....0....0....3....3....0....1....1....0....2....2....3....4....2
..3....4....1....0....2....4....2....2....1....0....3....1....2....4....5....3
..1....3....2....1....2....2....4....3....3....0....2....0....3....3....4....2
..1....3....3....1....3....4....3....3....1....2....1....2....1....5....4....0
		

Crossrefs

Cf. A212829.

Formula

Empirical: a(n) = 11*a(n-1) - 30*a(n-2) - 21*a(n-3) + 112*a(n-4) + 63*a(n-5) - 119*a(n-6) - 120*a(n-7) - 30*a(n-8) for n>11.
Empirical g.f.: x*(1 + x + x^2)*(1 - 10*x + 22*x^2 + 27*x^3 - 68*x^4 - 67*x^5 + 29*x^6 + 44*x^7 + 11*x^8) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 3*x - 3*x^2)*(1 - 5*x - 5*x^2)). - Colin Barker, Jul 21 2018

A212827 Number of 0..6 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..6 order.

Original entry on oeis.org

1, 2, 5, 13, 44, 168, 717, 3359, 17055, 92749, 534071, 3220152, 20122695, 129180223, 845868450, 5618381653, 37699577379, 254789247816, 1730682217663, 11797467544723, 80618379435810, 551861368167305, 3782253874750807
Offset: 1

Views

Author

R. H. Hardin May 28 2012

Keywords

Comments

Column 6 of A212829

Examples

			Some solutions for n=8
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....0....1....1....1....1....1....1....0....1
..2....2....0....2....0....2....0....1....2....2....2....1....2....2....1....2
..3....3....2....0....0....3....2....1....1....3....1....0....2....0....2....2
..3....3....1....0....1....3....1....2....3....2....0....0....3....3....1....3
..0....2....2....1....1....3....2....2....3....4....3....2....4....0....3....2
..4....2....3....1....2....4....2....0....2....1....4....3....3....1....0....1
..0....4....3....3....2....2....2....0....1....2....5....4....5....3....3....3
		

Formula

Empirical: a(n) = 16*a(n-1) -79*a(n-2) +70*a(n-3) +361*a(n-4) -372*a(n-5) -964*a(n-6) +144*a(n-7) +1116*a(n-8) +720*a(n-9) +144*a(n-10) for n>13

A212828 Number of 0..7 arrays of length n with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..7 order.

Original entry on oeis.org

1, 2, 5, 13, 44, 168, 717, 3360, 17091, 93492, 545670, 3372738, 21911216, 148486735, 1041923520, 7518618028, 55460237723, 416078640459, 3161904730760, 24261222270154, 187499556005523, 1456815538485716, 11363752138036864
Offset: 1

Views

Author

R. H. Hardin May 28 2012

Keywords

Comments

Column 7 of A212829

Examples

			Some solutions for n=8
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....0....1....1....1....1....1....1....1....1....1....1....1....0....0....1
..2....1....2....2....2....0....1....0....2....1....1....2....2....1....1....1
..2....1....1....0....2....2....2....2....3....0....0....3....3....2....2....2
..3....1....3....1....0....0....1....3....2....1....2....3....0....1....1....1
..4....2....2....2....2....3....3....0....4....2....1....0....1....1....1....1
..3....3....4....1....1....3....4....0....1....1....0....1....4....1....3....2
..5....0....4....0....0....4....4....0....4....0....0....3....4....3....0....2
		

Formula

Empirical: a(n) = 22*a(n-1) -168*a(n-2) +440*a(n-3) +421*a(n-4) -2898*a(n-5) -924*a(n-6) +7944*a(n-7) +5931*a(n-8) -6610*a(n-9) -10562*a(n-10) -5040*a(n-11) -840*a(n-12) for n>15

A212830 Number of 0..n arrays of length n+1 with no adjacent pair equal to its immediately preceding adjacent pair, and new values introduced in 0..n order.

Original entry on oeis.org

2, 5, 13, 44, 168, 717, 3360, 17092, 93538, 546873, 3396379, 22300885, 154193327, 1118804486, 8493592723, 67288261914, 554996479921, 4756036642107, 42266543239132, 388879705390976, 3698606881082199, 36312877059583874
Offset: 1

Views

Author

R. H. Hardin May 28 2012

Keywords

Comments

Subdiagonal 1 of A212829

Examples

			Some solutions for n
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..1....1....1....1....1....1....1....1....1....1....1....1....1....0....1....1
..0....1....1....1....2....2....2....0....2....2....2....0....2....1....1....2
..0....2....2....2....0....3....1....2....1....3....0....2....0....1....2....3
..2....1....3....0....0....4....3....2....1....4....2....1....0....1....0....1
..3....1....3....1....3....4....3....2....2....2....3....1....2....2....3....4
..4....2....4....0....1....4....4....1....3....2....4....0....3....2....0....5
..0....2....5....0....1....0....5....1....3....0....5....0....3....0....0....1
		
Showing 1-7 of 7 results.