cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212839 Number of 0..n arrays of length 6 with 0 never adjacent to n.

Original entry on oeis.org

2, 239, 2258, 10727, 35954, 97127, 226274, 472943, 909602, 1637759, 2794802, 4561559, 7170578, 10915127, 16158914, 23346527, 33014594, 45803663, 62470802, 83902919, 111130802, 145343879, 187905698, 240370127, 304498274, 382276127
Offset: 1

Views

Author

R. H. Hardin, May 28 2012

Keywords

Comments

Row 5 of A212835.

Examples

			Some solutions for n=5:
..1....3....2....5....5....1....5....2....4....2....0....2....0....1....0....3
..3....2....1....3....5....2....1....1....3....0....2....5....2....4....4....1
..5....1....4....2....5....3....2....2....3....1....5....4....2....0....3....1
..4....0....2....5....3....2....5....5....2....1....3....3....4....2....1....0
..2....1....2....5....0....3....1....3....1....4....5....3....0....4....5....1
..5....0....0....1....1....2....4....5....0....5....3....2....2....2....2....2
		

Crossrefs

Cf. A212835.

Formula

Empirical: a(n) = n^6 + 6*n^5 + 5*n^4 - 12*n^3 - 3*n^2 + 6*n - 1.
Conjectures from Colin Barker, Jul 21 2018: (Start)
G.f.: x*(2 + 225*x + 627*x^2 - 130*x^3 - 12*x^4 + 9*x^5 - x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)