This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212848 #20 Jun 20 2017 23:13:43 %S A212848 1,1,3,7,19,3,3,3,3,43,7,3,113,73,3,3,3,3,3,3,3,3,3,3,3,3,3,7,17,3, %T A212848 719,7,3,3,3,3,967,9539,3,17,47,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A212848 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,19 %N A212848 Least prime factor of n-th central trinomial coefficient (A002426). %C A212848 A002426(n) is prime for n = 2, 3, 4, no more through 10^5. A002426 is semiprime iff A102445(n) = 2 (as is the case for n = 5, 6, 7, 9, 10, 12, 13). %H A212848 Robert Israel, <a href="/A212848/b212848.txt">Table of n, a(n) for n = 0..729</a> %F A212848 a(n) = A020639(A002426(n)). %e A212848 a(9) = 43 because A002426(9) = 3139 = 43 * 73. %p A212848 A002426:= gfun:-rectoproc({(n+2)*a(n+2)-(2*n+3)*a(n+1)-3*(n+1)*a(n) = 0, a(0)=1, a(1)=1},a(n),remember): %p A212848 lpf:= proc(n) local F; %p A212848 F:= map(proc(t) if t[1]::integer then t[1] else NULL fi end proc, %p A212848 ifactors(n, easy)[2]); %p A212848 if nops(F) > 0 then min(F) %p A212848 else min(numtheory:-factorset(n)) %p A212848 fi %p A212848 end proc: %p A212848 lpf(1):= 1: %p A212848 map(lpf @ A002426, [$0..100]); # _Robert Israel_, Jun 20 2017 %t A212848 a = b = 1; t = Join[{a, b}, Table[c = ((2 n - 1) b + 3 (n - 1) a)/n; a = b; b = c; c, {n, 2, 100}]]; Table[FactorInteger[n][[1, 1]], {n, t}] (* _T. D. Noe_, May 30 2012 *) %o A212848 (PARI) a(n) = my(x=polcoeff((1 + x + x^2)^n, n)); if (x==1, 1, vecmin(factor(x)[,1])); \\ _Michel Marcus_, Jun 20 2017 %Y A212848 Cf. A000040, A002426, A020639, A102445, A212791. %K A212848 nonn,easy %O A212848 0,3 %A A212848 _Jonathan Vos Post_, May 28 2012