cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212866 Number of nondecreasing sequences of n 1..6 integers with no element dividing the sequence sum.

Original entry on oeis.org

0, 7, 16, 29, 52, 82, 122, 182, 259, 363, 492, 648, 816, 1018, 1268, 1586, 1973, 2419, 2904, 3452, 4063, 4762, 5543, 6421, 7393, 8487, 9700, 11052, 12543, 14183, 15960, 17915, 20023, 22303, 24760, 27422, 30279, 33373, 36697, 40284, 44131, 48250, 52614
Offset: 1

Views

Author

R. H. Hardin, May 29 2012

Keywords

Examples

			Some solutions for n=8:
..2....3....2....2....2....2....3....3....2....2....2....2....4....5....3....2
..2....3....2....2....3....5....3....4....2....3....2....2....4....5....3....3
..2....3....3....2....3....6....4....4....3....4....2....3....4....5....3....3
..3....3....3....2....3....6....4....4....3....4....2....3....5....5....3....3
..3....3....4....2....6....6....4....5....4....4....2....4....6....6....3....3
..3....3....5....2....6....6....4....6....4....4....2....5....6....6....5....3
..4....3....6....4....6....6....4....6....5....5....2....5....6....6....6....3
..4....4....6....5....6....6....5....6....6....5....5....5....6....6....6....3
		

Crossrefs

Column 6 of A212868.

Programs

  • Maple
    S6:= combinat:-powerset({$2..6}):
    f:= proc(n) local s,t,G,S,i,j,T;
      t:= 0:
      for S in S6 do
        G:= coeff(mul(add(x^i*y^(i*j),i=0..n),j=S),x,n);
        T:= select(s -> S = select(k -> s mod k <> 0, {$2..6}), [$2*n..6*n]);
        t:= t + add(coeff(G,y,s),s= T);
      od;
      t
    end proc:
    map(f, [$1..50]); # Robert Israel, Nov 23 2023

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +2*a(n-4) +a(n-5) +a(n-6) -4*a(n-7) +4*a(n-9) -a(n-10) -a(n-11) -a(n-12) -a(n-13) +4*a(n-14) -4*a(n-16) +a(n-17) +a(n-18) +2*a(n-19) -a(n-20) -5*a(n-21) +5*a(n-22) +a(n-23) -2*a(n-24) -a(n-25) -a(n-26) +4*a(n-27) -4*a(n-29) +a(n-30) +a(n-31) +a(n-32) +a(n-33) -4*a(n-34) +4*a(n-36) -a(n-37) -a(n-38) -2*a(n-39) +2*a(n-40) +2*a(n-41) -3*a(n-42) +a(n-43).