A212866 Number of nondecreasing sequences of n 1..6 integers with no element dividing the sequence sum.
0, 7, 16, 29, 52, 82, 122, 182, 259, 363, 492, 648, 816, 1018, 1268, 1586, 1973, 2419, 2904, 3452, 4063, 4762, 5543, 6421, 7393, 8487, 9700, 11052, 12543, 14183, 15960, 17915, 20023, 22303, 24760, 27422, 30279, 33373, 36697, 40284, 44131, 48250, 52614
Offset: 1
Keywords
Examples
Some solutions for n=8: ..2....3....2....2....2....2....3....3....2....2....2....2....4....5....3....2 ..2....3....2....2....3....5....3....4....2....3....2....2....4....5....3....3 ..2....3....3....2....3....6....4....4....3....4....2....3....4....5....3....3 ..3....3....3....2....3....6....4....4....3....4....2....3....5....5....3....3 ..3....3....4....2....6....6....4....5....4....4....2....4....6....6....3....3 ..3....3....5....2....6....6....4....6....4....4....2....5....6....6....5....3 ..4....3....6....4....6....6....4....6....5....5....2....5....6....6....6....3 ..4....4....6....5....6....6....5....6....6....5....5....5....6....6....6....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A212868.
Programs
-
Maple
S6:= combinat:-powerset({$2..6}): f:= proc(n) local s,t,G,S,i,j,T; t:= 0: for S in S6 do G:= coeff(mul(add(x^i*y^(i*j),i=0..n),j=S),x,n); T:= select(s -> S = select(k -> s mod k <> 0, {$2..6}), [$2*n..6*n]); t:= t + add(coeff(G,y,s),s= T); od; t end proc: map(f, [$1..50]); # Robert Israel, Nov 23 2023
Formula
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +2*a(n-4) +a(n-5) +a(n-6) -4*a(n-7) +4*a(n-9) -a(n-10) -a(n-11) -a(n-12) -a(n-13) +4*a(n-14) -4*a(n-16) +a(n-17) +a(n-18) +2*a(n-19) -a(n-20) -5*a(n-21) +5*a(n-22) +a(n-23) -2*a(n-24) -a(n-25) -a(n-26) +4*a(n-27) -4*a(n-29) +a(n-30) +a(n-31) +a(n-32) +a(n-33) -4*a(n-34) +4*a(n-36) -a(n-37) -a(n-38) -2*a(n-39) +2*a(n-40) +2*a(n-41) -3*a(n-42) +a(n-43).