cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212868 Rectangular array T(n,k) = number of nondecreasing sequences of n 1..k integers with no element dividing the sequence sum (for n, k >= 1), read by decreasing antidiagonals.

This page as a plain text file.
%I A212868 #23 Sep 09 2019 12:06:03
%S A212868 0,0,0,0,0,0,0,1,0,0,0,2,1,0,0,0,5,3,1,0,0,0,7,9,5,2,0,0,0,12,16,15,6,
%T A212868 2,0,0,0,16,29,29,22,9,2,0,0,0,22,43,59,52,32,12,3,0,0,0,28,64,103,
%U A212868 112,82,40,15,3,0,0,0,37,92,168,212,199,122,59,17,3,0,0,0,43,127,259,376,407
%N A212868 Rectangular array T(n,k) = number of nondecreasing sequences of n 1..k integers with no element dividing the sequence sum (for n, k >= 1), read by decreasing antidiagonals.
%C A212868 Table starts:
%C A212868   0 0 0  0  0   0    0    0    0     0     0     0      0      0      0      0 ...
%C A212868   0 0 1  2  5   7   12   16   22    28    37    43     54     64     75     86 ...
%C A212868   0 0 1  3  9  16   29   43   64    92   127   168    219    281    355    435 ...
%C A212868   0 0 1  5 15  29   59  103  168   259   386   553    772   1043   1401   1832 ...
%C A212868   0 0 2  6 22  52  112  212  376   640  1011  1560   2293   3328   4711   6524 ...
%C A212868   0 0 2  9 32  82  199  407  796  1424  2407  3948   6166   9456  14171  20556 ...
%C A212868   0 0 2 12 40 122  319  722 1503  2872  5159  9087  15030  24441  38349  58701 ...
%C A212868   0 0 3 15 59 182  503 1214 2693  5517 10574 19715  34318  58653  96517 154975 ...
%C A212868   0 0 3 17 74 259  733 1912 4560 10052 20363 39988  73196 131054 225666 378925 ...
%C A212868   0 0 3 22 97 363 1067 2960 7533 17497 37344 77105 148113 276174 498304 873878 ...
%C A212868   ...
%H A212868 R. H. Hardin, <a href="/A212868/b212868.txt">Table of n, a(n) for n = 1..958</a>
%e A212868 All solutions for n=8 and k=4:
%e A212868   2   2   2   3   3   2   2   2   2   3   2   2   2   3   2
%e A212868   2   3   2   4   3   2   2   2   2   3   2   2   3   3   3
%e A212868   2   3   3   4   3   2   3   2   2   3   2   2   3   3   4
%e A212868   2   3   3   4   4   2   3   3   2   3   3   2   3   3   4
%e A212868   2   3   3   4   4   2   3   3   2   3   4   3   3   3   4
%e A212868   3   3   4   4   4   2   3   3   2   3   4   4   3   3   4
%e A212868   3   3   4   4   4   2   3   4   3   4   4   4   4   3   4
%e A212868   3   3   4   4   4   3   4   4   4   4   4   4   4   4   4
%Y A212868 Cf. A161664 (row 2, cicada cycles), A212870 (row 3), A212871 (row 4), A212872 (row 5), A212873 (row 6), A212874 (row 7).
%Y A212868 Cf. A212864 (column 4), A212865 (column 5), A212866 (column 6), A212867 (column 7).
%Y A212868 Cf. A212869 (superdiagonal 1).
%K A212868 nonn,tabl
%O A212868 1,12
%A A212868 _R. H. Hardin_, May 29 2012