cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212880 Decimal expansion of the negated argument of i!.

Original entry on oeis.org

3, 0, 1, 6, 4, 0, 3, 2, 0, 4, 6, 7, 5, 3, 3, 1, 9, 7, 8, 8, 7, 5, 3, 1, 6, 5, 7, 7, 9, 6, 8, 9, 6, 5, 4, 0, 6, 5, 9, 8, 9, 9, 7, 7, 3, 9, 4, 3, 7, 6, 5, 2, 3, 6, 9, 4, 0, 7, 4, 4, 0, 0, 5, 3, 8, 3, 0, 6, 0, 5, 8, 1, 4, 3, 9, 5, 0, 2, 9, 5, 3, 3, 9, 9, 8, 9, 8, 2, 2, 6, 9, 7, 2, 7, 9, 5, 0, 1, 1, 9, 4, 2, 3, 4, 4
Offset: 0

Views

Author

Stanislav Sykora, May 29 2012

Keywords

Comments

The value is in radians.

Examples

			0.30164032046753319788753165779...
		

Crossrefs

Cf. A212877 (real(i!)), A212878 (-imag(i!)), A212879 (abs(i!)).
Cf. A001620 (gamma), A352619.

Programs

Formula

Equals -arg(i*Gamma(i)), since i! = Gamma(1+i) = i*Gamma(i).
Equals lim_{n->infinity} ((Sum_{k=1..n} arctan(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
Equals arctan(A212878/A212877). - Vaclav Kotesovec, Dec 10 2015
From Amiram Eldar, Jun 12 2021: (Start)
Equals 1 - Integral_{x=0..Pi/2} frac(cot(x)) dx, where frac(x) = x - floor(x) is the fractional part of x.
Equals gamma - Sum_{k>=1} (-1)^(k+1)*zeta(2*k+1)/(2*k+1) = A001620 - A352619.
Both formulae are from Vălean (2018). (End)
Equals log((Gamma(1-i)/Gamma(1+i))^(-i/2)). - Vaclav Kotesovec, Jun 12 2021