A212880 Decimal expansion of the negated argument of i!.
3, 0, 1, 6, 4, 0, 3, 2, 0, 4, 6, 7, 5, 3, 3, 1, 9, 7, 8, 8, 7, 5, 3, 1, 6, 5, 7, 7, 9, 6, 8, 9, 6, 5, 4, 0, 6, 5, 9, 8, 9, 9, 7, 7, 3, 9, 4, 3, 7, 6, 5, 2, 3, 6, 9, 4, 0, 7, 4, 4, 0, 0, 5, 3, 8, 3, 0, 6, 0, 5, 8, 1, 4, 3, 9, 5, 0, 2, 9, 5, 3, 3, 9, 9, 8, 9, 8, 2, 2, 6, 9, 7, 2, 7, 9, 5, 0, 1, 1, 9, 4, 2, 3, 4, 4
Offset: 0
Examples
0.30164032046753319788753165779...
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 5.
- Mircea Ivan, Problem 11592, The American Mathematical Monthly, Vol. 118, No. 7 (2011), p. 654; Arggh! Eye Factorial ... Arg(i!), Solutions to problem 11592 by Nora Thornbe, Omran Kouba and Denis Constales, ibid., Vol. 120, No. 7 (2013), p. 662-664.
- Cornel Ioan Vălean, Problema 327, La Gaceta de la Real Sociedad Matemática Española, Vol. 21, No. 2 (2018), pp. 331-343.
Crossrefs
Programs
-
Mathematica
RealDigits[-Arg[Gamma[1 + I]], 10, 105] // First (* Jean-François Alcover, Aug 07 2014 *)
Formula
Equals -arg(i*Gamma(i)), since i! = Gamma(1+i) = i*Gamma(i).
Equals lim_{n->infinity} ((Sum_{k=1..n} arctan(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
From Amiram Eldar, Jun 12 2021: (Start)
Equals 1 - Integral_{x=0..Pi/2} frac(cot(x)) dx, where frac(x) = x - floor(x) is the fractional part of x.
Both formulae are from Vălean (2018). (End)
Equals log((Gamma(1-i)/Gamma(1+i))^(-i/2)). - Vaclav Kotesovec, Jun 12 2021
Comments