This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212891 #12 Jun 21 2012 12:17:47 %S A212891 1,6,4,20,17,9,50,46,34,16,105,100,84,57,25,196,190,170,134,86,36,336, %T A212891 329,305,260,196,121,49,540,532,504,450,370,270,162,64,825,816,784, %U A212891 721,625,500,356,209,81,1210,1200,1164,1092,980,830,650,454,262 %N A212891 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = (n-1+h)^2, n>=1, h>=1, and ** = convolution. %C A212891 Principal diagonal: A213436 %C A212891 Antidiagonal sums: A024166 %C A212891 row 1, (1,2,3,...)**(1,4,9,...): A002415(k+1) %C A212891 row 2, (1,2,3,...)**(4,9,16,...): k*(k^3 + 8*k^2 + 23*k + 16)/12 %C A212891 row 3, (1,2,3,...)**(9,16,25,...): k*(k^3 + 12*k^2 + 53*k + 42)/12 %C A212891 ... %C A212891 For a guide to related arrays, see A213500. %F A212891 T(n,k) = 5*T(n,k-1) - 10*T(n,k-2) + 10*T(n,k-3) - 5*T(n,k-4) + T(n,k-5). %F A212891 G.f. for row n: f(x)/g(x), where f(x) = n^2 - (2*n^2 - 2*n - 1)*x + ((n-1)^2)*x^2 and g(x) = (1 - x)^5. %e A212891 Northwest corner (the array is read by falling antidiagonals): %e A212891 1....6....20....50....105....196...336 %e A212891 4....17...46....100...190....329...532 %e A212891 9....34...84....170...305....504...784 %e A212891 16...57...134...260...450....721...1092 %e A212891 25...86...196...370...625....980...1456 %e A212891 ... %e A212891 T(5,1) = (1)**(25) = 25 %e A212891 T(5,2) = (1,2)**(25,36) = 1*36+2*25 = 86 %e A212891 T(5,3) = (1,2,3)**(25,36,49) = 1*49+2*36+3*25 = 196 %t A212891 b[n_] := n; c[n_] := n^2 %t A212891 t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}] %t A212891 TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]] %t A212891 Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]] %t A212891 r[n_] := Table[t[n, k], {k, 1, 60}] (* A212891 *) %t A212891 d = Table[t[n, n], {n, 1, 40}] (* A213436 *) %t A212891 s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}] %t A212891 s1 = Table[s[n], {n, 1, 50}] (* A024166 *) %Y A212891 Cf. A213500. %K A212891 nonn,easy,tabl %O A212891 1,2 %A A212891 _Clark Kimberling_, Jun 16 2012