This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212908 #17 Aug 02 2018 07:55:47 %S A212908 13,15,16,18,19,21,22,23,25,30,32,34,36,47,53,56,63,69,74,75,76,80,90, %T A212908 92,96,104,108,117,123,133,136,153,165,169,172,176,190,198,228,238, %U A212908 245,259,273,285,286,294,304,325,328,340,342,350,357,369,370,376,385,390,403,408,416,420,423,425,429,444,448,459,462,465,468,484,496,500 %N A212908 Numbers n such that A212813(n) = 3. %D A212908 Bellamy, O. S.; Cadogan, C. C. Subsets of positive integers: their cardinality and maximality properties. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 167--178, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561043 (82b:10006) %H A212908 Reinhard Zumkeller and Donovan Johnson, <a href="/A212908/b212908.txt">Table of n, a(n) for n = 1..2632</a> (terms up to a(2500) from Reinhard Zumkeller) %t A212908 nmax = 258280326 (* = last term = a(2632) *); %t A212908 kmax = 100 (* = number of terms to compute *); %t A212908 a36288[n_] := a36288[n] = If[n==1, 1, Total[Times @@@ FactorInteger[n]]+1]; %t A212908 a212813[n_] := Module[{i, k = n}, For[i = 1, i <= 4, i++, If[k == 8, Return[i-1]]; k = a36288[k]]; -1]; %t A212908 k = 0; %t A212908 Do[If[a212813[n] == 3, k++; If[k > kmax, Break[]]; a[k] = n; Print["a(", k, ") = ", n]], {n, 1, nmax}]; %t A212908 Array[a, kmax] (* _Jean-François Alcover_, Aug 02 2018 *) %o A212908 (Haskell) %o A212908 import Data.List (elemIndices) %o A212908 a212908 n = a212908_list !! (n-1) %o A212908 a212908_list = map (+ 1) $ elemIndices 3 a212813_list %o A212908 -- _Reinhard Zumkeller_, May 30 2012 %Y A212908 Cf. A212813, A212814, A212815, A212816, A212909. %K A212908 nonn,fini,full %O A212908 1,1 %A A212908 _N. J. A. Sloane_, May 30 2012 %E A212908 Keyword "full" added by _Donovan Johnson_, Jun 02 2012