This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212921 #11 Jun 01 2012 12:02:28 %S A212921 4,15,20,21,35,42,55,65,70,95,100,105,110,120,125,130,135,140,150,160, %T A212921 161,170,180,182,187,190,200,203,217,220,225,231,240,260,270,280,285, %U A212921 301,305,312,315,319,322,340,343,351,365,370,371,375,395,400,406,407 %N A212921 Composite number n = Product(p_j^k_j) that under the iteration of the map Product (p_j^k_j) -> Sum (p_j * k_j) reaches a limit that divides the number itself. %C A212921 Apart from the case n=4, the limit of the iteration is a prime number. %H A212921 Paolo P. Lava, <a href="/A212921/b212921.txt">Table of n, a(n) for n = 1..10000</a> %e A212921 70 = 2*5*7 -> 2+5+7 = 14 =2*7 -> 2+7=9 = 3^2 -> 3*2=6=2*3 -> 2+3=5 and 70/5=14. %p A212921 with(numtheory); %p A212921 A212921:=proc(q) %p A212921 local a,b,c,d,i,k,n; %p A212921 print(4); %p A212921 for n from 5 to q do %p A212921 if not isprime(n) then a:=n; %p A212921 while not isprime(a) do %p A212921 b:=ifactors(a)[2]; c:=nops(b); b:=op(b); d:=0; %p A212921 if c=1 then d:=b[1]*b[2]; %p A212921 else for k from 1 to c do d:=d+b[k][1]*b[k][2]; od; fi; %p A212921 a:=d; if isprime(d) then if trunc(n/d)=n/d then lprint(n,d); fi; break; fi; od; %p A212921 fi; %p A212921 od; %p A212921 end: %p A212921 A212921(10000); %t A212921 it[n_] := it[n] = Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; Dot[p, e]]; it2[n_] := FixedPointList[it[#] &, n]; Select[Range[2, 1000], ! PrimeQ[#] && Mod[#, it2[#][[-1]]] == 0 &] (* _T. D. Noe_, Jun 01 2012 *) %Y A212921 Cf. A029909. %K A212921 nonn %O A212921 1,1 %A A212921 _Paolo P. Lava_, May 31 2012