cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212954 Array of Ramsey numbers R(n,k) (n >= 1, k >= 1) read by antidiagonals.

This page as a plain text file.
%I A212954 #48 Feb 16 2025 08:33:17
%S A212954 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,9,9,5,1,1,6,14,18,14,6,1,1,7,18,25,
%T A212954 25,18,7,1,1,8,23
%N A212954 Array of Ramsey numbers R(n,k) (n >= 1, k >= 1) read by antidiagonals.
%C A212954 Essentially the same as A059442, which is the main entry for these numbers.
%D A212954 See A059442.
%H A212954 Stanislaw Radziszowski, <a href="https://doi.org/10.37236/21">Small Ramsey Numbers</a>, The Electronic Journal of Combinatorics, Dynamic Surveys, DS1, Mar 3 2017.
%H A212954 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamseyNumber.html">Ramsey Number</a>
%H A212954 Wikipedia, <a href="http://en.wikipedia.org/wiki/Ramsey_theorem">Ramsey's theorem</a>
%F A212954 R(r, 1) = R(1, r) = 1
%F A212954 R(r, 2) = R(2, r) = r
%F A212954 R(r, s) <= R(r-1, s) + R(r, s-1)
%F A212954 R(r, s) <= R(r-1, s) + R(r, s-1) - 1 if R(r-1, s) and R(r, s-1) are both even
%F A212954 R(r, r) <= 4 * R(r, r-2) + 2
%e A212954 The initial antidiagonals are:
%e A212954 1,
%e A212954 1,  1,
%e A212954 1,  2,  1,
%e A212954 1,  3,  3,  1,
%e A212954 1,  4,  6,  4,  1,
%e A212954 1,  5,  9,  9,  5,  1,
%e A212954 1,  6, 14, 18, 14,  6,  1,
%e A212954 1,  7, 18, 25, 25, 18,  7,  1,
%e A212954 1,  8, 23,  ?,  ?,  ?, 23,  8,  1,
%e A212954 1,  9, 28,  ?,  ?,  ?,  ?, 28,  9,  1,
%e A212954 1, 10, 36,  ?,  ?,  ?,  ?,  ?, 36, 10,  1,
%e A212954 ...
%e A212954 ...
%Y A212954 Cf. A000791, A213368 (row sums).
%K A212954 nonn,tabl,hard,more
%O A212954 1,5
%A A212954 _Joerg Arndt_, Jun 01 2012
%E A212954 Edited by _N. J. A. Sloane_, Nov 05 2023