This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A212963 #31 Dec 29 2021 10:33:36 %S A212963 0,0,0,12,36,84,156,264,408,600,840,1140,1500,1932,2436,3024,3696, %T A212963 4464,5328,6300,7380,8580,9900,11352,12936,14664,16536,18564,20748, %U A212963 23100,25620,28320,31200,34272,37536,41004,44676,48564,52668,57000 %N A212963 a(n) = number of ordered triples (w,x,y) such that w,x,y are all in {0,...,n} and the numbers |w-x|, |x-y|, |y-w| are distinct. %C A212963 For each n, there are (n+1)^3 ordered triples, ranging in lexicographical order from (0,0,0) to (n,n,n). For n = 3, the ordered triples (w,x,y) for which |w-x|, |x-y|, |y-w| are distinct are listed in the Example. %C A212963 For a guide to related sequences, see A212959. %C A212963 The ambiguous term "ordered triple" here means that the order matters: (w,x,y) is a different triple from (w,y,x), etc. It does not mean that w<x<y. - _N. J. A. Sloane_, Dec 28 2021 %H A212963 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2,-2,3,-1). %F A212963 a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). %F A212963 G.f.: 12*x^3/((1 + x)*(1 - x)^4). %F A212963 a(n+3) = 12*A002623(n). %F A212963 a(n) = (2*n^3 - 3*n^2 - 2*n + 3*(n mod 2))/2. - _Ayoub Saber Rguez_, Dec 06 2021 %e A212963 a(3) counts the 12 ordered triples in the first column of the following list: %e A212963 (w,x,y) (|w-x|,|x-y|,|y-w|) %e A212963 ---------------------------- %e A212963 (0,1,3) (1,2,3) %e A212963 (0,2,3) (2,1,3) %e A212963 (0,3,1) (3,2,1) %e A212963 (0,3,2) (3,1,2) %e A212963 (1,0,3) (1,3,2) %e A212963 (1,3,0) (2,3,1) %e A212963 (2,0,3) (2,3,1) %e A212963 (2,3,0) (1,3,2) %e A212963 (3,0,1) (3,1,2) %e A212963 (3,0,2) (3,2,1) %e A212963 (3,1,0) (2,1,3) %e A212963 (3,2,0) (1,2,3) %t A212963 t = Compile[{{n, _Integer}}, %t A212963 Module[{s = 0}, (Do[If[Abs[w - x] != Abs[x - y] && Abs[x - y] != Abs[y - w] && %t A212963 Abs[y - w] != Abs[w - x], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]]; %t A212963 m = Map[t[#] &, Range[0, 45]] (*A212963*) %t A212963 m/12 (*essentially A002623*) %Y A212963 Cf. A002623, A212959. %K A212963 nonn,easy %O A212963 0,4 %A A212963 _Clark Kimberling_, Jun 02 2012 %E A212963 Definition corrected by _Clark Kimberling_, Dec 28 2021