cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A212982 Number of (w,x,y) with all terms in {0,...,n} and w

Original entry on oeis.org

0, 3, 11, 27, 53, 92, 146, 218, 310, 425, 565, 733, 931, 1162, 1428, 1732, 2076, 2463, 2895, 3375, 3905, 4488, 5126, 5822, 6578, 7397, 8281, 9233, 10255, 11350, 12520, 13768, 15096, 16507, 18003, 19587, 21261, 23028, 24890, 26850, 28910, 31073, 33341, 35717
Offset: 0

Views

Author

Clark Kimberling, Jun 04 2012

Keywords

Comments

For a guide to related sequences, see A212959.

Crossrefs

Cf. A212959.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < x + y && x <= y, s = s + 1],
    {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
    m = Map[t[#] &, Range[0, 60]]   (* A212982 *)
  • PARI
    concat(0, Vec(x*(3+2*x)/((1-x)^4*(1+x)) + O(x^100))) \\ Colin Barker, Jan 28 2016

Formula

a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5).
G.f.: f(x)/g(x), where f(x)=3*x + 2*x^2 and g(x)=(1+x)*(1-x)^4.
From Colin Barker, Jan 28 2016: (Start)
a(n) = (20*n^3+66*n^2+52*n-3*(-1)^n+3)/48.
a(n) = (10*n^3+33*n^2+26*n)/24 for n even.
a(n) = (10*n^3+33*n^2+26*n+3)/24 for n odd.
(End)