This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213005 #51 May 21 2021 17:44:36 %S A213005 1,3,5,9,17,33,45,72,143,152,303,420,451,603,952,1398,1572,2408,3762, %T A213005 4233,5880,6325,8469,13384,20079,34189,62769,82665,87448,161037, %U A213005 287283,371337,515745,533505,573815,734484,737035,737149,767505,825495,887865,1136468,2272935 %N A213005 a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a triangular number. %C A213005 Corresponding triangular numbers t(n)=a(n)*a(n+1): 3, 15, 45, 153, 561, 1485, 3240, 10296, 21736, 46056, 127260, 189420, 271953, 574056, 1330896, 2197656, 3785376, 9058896, 15924546, 24890040, 37191000, ... %t A213005 a[0] = 1; a[n_] := a[n] = For[k = a[n-1]+1, True, k++, If[ IntegerQ[ Sqrt[8k*a[n-1]+1] ], Return[k] ] ]; Table[ Print[a[n]]; a[n], {n, 0, 42}] (* _Jean-François Alcover_, Sep 14 2012 *) %o A213005 (Python) %o A213005 a = 1 %o A213005 for n in range(55): %o A213005 print(a, end=',') %o A213005 b = k = 0 %o A213005 while k<=a: %o A213005 tn = b*(b+1)//2 %o A213005 k = 0 %o A213005 if tn%a==0: %o A213005 k = tn // a %o A213005 b += 1 %o A213005 a = k %Y A213005 Cf. A000217, A214961. %Y A213005 Cf. A081976 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a Fibonacci number). %Y A213005 Cf. A006882 (a(0)=a(1)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a factorial). %Y A213005 Cf. A079078 (a(0)=1, a(n) = least k > a(n-1) such that k*a(n-1) is a primorial). %K A213005 nonn,easy %O A213005 0,2 %A A213005 _Alex Ratushnyak_, Aug 03 2012