cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213008 Triangle T(n,k) of number of distinct values of multinomial coefficients corresponding to sequence A026820 (n >= 1, 1 <= k <= n).

This page as a plain text file.
%I A213008 #43 May 24 2020 14:58:20
%S A213008 1,1,2,1,2,3,1,3,4,5,1,3,5,6,7,1,4,7,9,10,11,1,4,8,10,12,13,14,1,5,9,
%T A213008 14,16,18,19,20,1,5,12,17,21,23,25,26,27,1,6,13,21,26,30,32,34,35,36,
%U A213008 1,6,16,25,33,37,41,43,45,46,47,1,7,19,32,42,50,54,58,60,62,63,64
%N A213008 Triangle T(n,k) of number of distinct values of multinomial coefficients corresponding to sequence A026820 (n >= 1, 1 <= k <= n).
%C A213008 Differs from A026820 after position 24.
%C A213008 Includes sequence A070289 when k = n.
%H A213008 Alois P. Heinz, <a href="/A213008/b213008.txt">Rows n = 1..45, flattened</a>
%H A213008 Katsuhisa Yamanaka, Shin-ichiro Kawano, Yosuke Kikuchi, and Shin-ichi Nakano, <a href="https://doi.org/10.1093/ietfec/e90-a.5.888">Constant Time Generation of Integer Partitions</a>, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E90-A, no.5, pp. 888-895, (May-2007).
%H A213008 Sergei Viznyuk, <a href="http://phystech.com/ftp/A213008.c">C-Program for this sequence</a>, 2012.
%H A213008 Sergei Viznyuk, <a href="/A213008/a213008.c.txt">C-Program for sequences A026820, A070289, and A213008 (local copy)</a>, 2012.
%e A213008 Triangle T(n,k) begins:
%e A213008   1;
%e A213008   1, 2;
%e A213008   1, 2, 3;
%e A213008   1, 3, 4,  5;
%e A213008   1, 3, 5,  6,  7;
%e A213008   1, 4, 7,  9, 10, 11;
%e A213008   1, 4, 8, 10, 12, 13, 14;
%e A213008   ...
%e A213008 Thus, for n = 7 and k = 6 there are 13 distinct values of multinomial coefficients corresponding to partitions of n = 7 into at most k = 6 parts. The corresponding number of partitions from sequence A026820 is 14. That is because partitions 7 = 4 + 1 + 1 + 1 and 7 = 3 + 2 + 2 produce the same value of multinomial coefficient 7!/(4!*1!*1!*1!) = 7!/(3!*2!*2!).
%p A213008 b:= proc(n, i, k) option remember; if n=0 then {1} elif i<1
%p A213008       then {} else {b(n, i-1, k)[], seq(map(x-> x*i!^j,
%p A213008               b(n-i*j, i-1, k-j))[], j=1..min(n/i, k))} fi
%p A213008     end:
%p A213008 T:= (n, k)-> nops(b(n, n, k)):
%p A213008 seq(seq(T(n,k), k=1..n), n=1..14);  # _Alois P. Heinz_, Aug 14 2012
%t A213008 b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1}, If[i<1, {}, Join[b[n, i-1, k], Table[ Function[#*i!^j] /@ b[n-i*j, i-1, k-j], {j, 1, Min[n/i, k]}] // Flatten] // Union] ]; T[n_, k_] := Length[b[n, n, k]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* _Jean-François Alcover_, Mar 12 2015, after _Alois P. Heinz_ *)
%Y A213008 Cf. A026820, A070289.
%K A213008 nonn,tabl
%O A213008 1,3
%A A213008 _Sergei Viznyuk_, Jun 01 2012