A213043 Convolution of (1,-1,2,-2,3,-3,...) and A000045 (Fibonacci numbers).
1, 0, 3, 1, 7, 5, 16, 17, 38, 50, 94, 138, 239, 370, 617, 979, 1605, 2575, 4190, 6755, 10956, 17700, 28668, 46356, 75037, 121380, 196431, 317797, 514243, 832025, 1346284, 2178293, 3524594, 5702870, 9227482, 14930334, 24157835, 39088150, 63246005, 102334135
Offset: 0
Examples
a(5) = (1,-1,2,-2,3,-3)**(1,1,2,3,5,8)=1*8-1*5+2*3-2*2+3*1-3*1 = 5.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,1,-2,-1).
Programs
-
Mathematica
f[x_] := (1 - x^2) (1 + x); g[x] := 1 - x - x^2; s = Normal[Series[1/(f[x] g[x]), {x, 0, 60}]] c = CoefficientList[s, x] (* A213043 *) LinearRecurrence[{0, 3, 1, -2, -1}, {1, 0, 3, 1, 7}, 60] Table[Fibonacci[n+1] + ((-1)^n (2n+1) - 1)/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
-
PARI
Vec(1/((1-x)*(1+x)^2*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
Formula
a(n) = 3*a(n-2)+a(n-3)-2*a(n-4)-a(n-5).
G.f.: 1/((1 + x)^2 * (1 - 2*x + x^3)).
From Vladimir Reshetnikov, Oct 29 2015: (Start)
a(n) = Fibonacci(n+1) + ((-1)^n*(2*n+1)-1)/4, where Fibonacci(n) = A000045(n).
Recurrence (4-term): a(0) = 1, a(1) = 0, a(2) = 3, (2*n+1)*a(n) = n + 1 - 2*a(n-1) + 4*(n+1)*a(n-2) + (2*n+3)*a(n-3).
(End)
From Colin Barker, Mar 16 2016: (Start)
a(n) = (-5-5*(-1)^n+2^(1-n)*sqrt(5)*(-(1-sqrt(5))^(1+n)+(1+sqrt(5))^(1+n))+10*(-1)^n*(1+n))/20.
a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))+10*(n+1)-10)/20 for n even.
a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))-10*(n+1))/20 for n odd.
(End)
Comments