cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213043 Convolution of (1,-1,2,-2,3,-3,...) and A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 0, 3, 1, 7, 5, 16, 17, 38, 50, 94, 138, 239, 370, 617, 979, 1605, 2575, 4190, 6755, 10956, 17700, 28668, 46356, 75037, 121380, 196431, 317797, 514243, 832025, 1346284, 2178293, 3524594, 5702870, 9227482, 14930334, 24157835, 39088150, 63246005, 102334135
Offset: 0

Views

Author

Clark Kimberling, Jun 10 2012

Keywords

Comments

(1,-1,2,-2,3,-3,...) = ((-1)^n)*(1+floor(n/2)), which results from A001057 by removing its initial 0.

Examples

			a(5) = (1,-1,2,-2,3,-3)**(1,1,2,3,5,8)=1*8-1*5+2*3-2*2+3*1-3*1 = 5.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := (1 - x^2) (1 + x); g[x] := 1 - x - x^2;
    s = Normal[Series[1/(f[x] g[x]), {x, 0, 60}]]
    c = CoefficientList[s, x]  (* A213043 *)
    LinearRecurrence[{0, 3, 1, -2, -1}, {1, 0, 3, 1, 7}, 60]
    Table[Fibonacci[n+1] + ((-1)^n (2n+1) - 1)/4, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
  • PARI
    Vec(1/((1-x)*(1+x)^2*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016

Formula

a(n) = 3*a(n-2)+a(n-3)-2*a(n-4)-a(n-5).
G.f.: 1/((1 + x)^2 * (1 - 2*x + x^3)).
From Vladimir Reshetnikov, Oct 29 2015: (Start)
a(n) = Fibonacci(n+1) + ((-1)^n*(2*n+1)-1)/4, where Fibonacci(n) = A000045(n).
Recurrence (4-term): a(0) = 1, a(1) = 0, a(2) = 3, (2*n+1)*a(n) = n + 1 - 2*a(n-1) + 4*(n+1)*a(n-2) + (2*n+3)*a(n-3).
(End)
From Colin Barker, Mar 16 2016: (Start)
a(n) = (-5-5*(-1)^n+2^(1-n)*sqrt(5)*(-(1-sqrt(5))^(1+n)+(1+sqrt(5))^(1+n))+10*(-1)^n*(1+n))/20.
a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))+10*(n+1)-10)/20 for n even.
a(n) = (sqrt(5)*2^(1-n)*((1+sqrt(5))^(n+1)-(1-sqrt(5))^(n+1))-10*(n+1))/20 for n odd.
(End)