This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213046 #19 Aug 31 2023 16:38:02 %S A213046 2,3,8,13,25,41,71,116,193,314,514,834,1356,2197,3562,5767,9339,15115, %T A213046 24465,39590,64067,103668,167748,271428,439190,710631,1149836,1860481, %U A213046 3010333,4870829,7881179,12752024,20633221,33385262,54018502,87403782,141422304 %N A213046 Convolution of Lucas numbers and positive integers repeated (A000032 and A008619). %H A213046 Colin Barker, <a href="/A213046/b213046.txt">Table of n, a(n) for n = 0..1000</a> %H A213046 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-3,0,1). %F A213046 a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5). %F A213046 G.f.: (-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)). %F A213046 a(n) = (-9/4 + (3*(-1)^n)/4 + (2^(-n)*((1-t)^n*(-5+2*t) + (1+t)^n*(5+2*t)))/t + (-1-n)/2) where t=sqrt(5). - _Colin Barker_, Feb 09 2017 %t A213046 f[x_] := (1 + x) (1 - x)^2; g[x] := 1 - x - x^2; %t A213046 s = Normal[Series[(2 - x)/(f[x] g[x]), {x, 0, 60}]] %t A213046 CoefficientList[s, x] (* A213046 *) %t A213046 LinearRecurrence[{2,1,-3,0,1},{2,3,8,13,25},40] (* _Harvey P. Dale_, Aug 31 2023 *) %o A213046 (Magma) /* By definition */ A008619:=func<n | 1+Floor(n/2)>; [&+[A008619(i)*Lucas(n-i): i in [0..n]]: n in [0..34]]; %o A213046 (PARI) a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,-3,1,2]^n*[2;3;8;13;25])[1,1] \\ _Charles R Greathouse IV_, Jan 29 2016 %o A213046 (PARI) Vec((-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)) + O(x^60)) \\ _Colin Barker_, Feb 09 2017 %Y A213046 Cf. A213500. %K A213046 nonn,easy %O A213046 0,1 %A A213046 _Clark Kimberling_, Jun 10 2012