cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213046 Convolution of Lucas numbers and positive integers repeated (A000032 and A008619).

This page as a plain text file.
%I A213046 #19 Aug 31 2023 16:38:02
%S A213046 2,3,8,13,25,41,71,116,193,314,514,834,1356,2197,3562,5767,9339,15115,
%T A213046 24465,39590,64067,103668,167748,271428,439190,710631,1149836,1860481,
%U A213046 3010333,4870829,7881179,12752024,20633221,33385262,54018502,87403782,141422304
%N A213046 Convolution of Lucas numbers and positive integers repeated (A000032 and A008619).
%H A213046 Colin Barker, <a href="/A213046/b213046.txt">Table of n, a(n) for n = 0..1000</a>
%H A213046 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-3,0,1).
%F A213046 a(n) = 2*a(n-1) + a(n-2) - 3*a(n-3) + a(n-5).
%F A213046 G.f.: (-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)).
%F A213046 a(n) = (-9/4 + (3*(-1)^n)/4 + (2^(-n)*((1-t)^n*(-5+2*t) + (1+t)^n*(5+2*t)))/t + (-1-n)/2) where t=sqrt(5). - _Colin Barker_, Feb 09 2017
%t A213046 f[x_] := (1 + x) (1 - x)^2; g[x] := 1 - x - x^2;
%t A213046 s = Normal[Series[(2 - x)/(f[x] g[x]), {x, 0, 60}]]
%t A213046 CoefficientList[s, x]  (* A213046 *)
%t A213046 LinearRecurrence[{2,1,-3,0,1},{2,3,8,13,25},40] (* _Harvey P. Dale_, Aug 31 2023 *)
%o A213046 (Magma) /* By definition */ A008619:=func<n | 1+Floor(n/2)>; [&+[A008619(i)*Lucas(n-i): i in [0..n]]: n in [0..34]];
%o A213046 (PARI) a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,0,-3,1,2]^n*[2;3;8;13;25])[1,1] \\ _Charles R Greathouse IV_, Jan 29 2016
%o A213046 (PARI) Vec((-2 + x)/((-1 + x)^2*(-1 + 2*x^2 + x^3)) + O(x^60)) \\ _Colin Barker_, Feb 09 2017
%Y A213046 Cf. A213500.
%K A213046 nonn,easy
%O A213046 0,1
%A A213046 _Clark Kimberling_, Jun 10 2012