This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213048 #22 Nov 21 2020 16:15:28 %S A213048 1,1,5,31,229,1981,19775,224589,2864901,40591255,632760105, %T A213048 10765616885,198543617119,3945765358653,84070841065937, %U A213048 1911864488674531,46222718892288645,1183919151676806177,32025836905529003471,912372909851608715945,27304698509111141688969 %N A213048 Number of preferential arrangements of n labeled elements with repetitions allowed. %H A213048 Alois P. Heinz, <a href="/A213048/b213048.txt">Table of n, a(n) for n = 0..250</a> %F A213048 a(n) = Sum_{k=1..n} C(n+k-1,k)*a(n-k) for n>0, a(0) = 1. %F A213048 a(n) = Sum_c(n) C(n+k1-1,k1) C(n-k1+k2-1,k2) C(n-k1-k2+k3-1,k3) ..., where Sum_c(n) denotes the sum over all compositions (ordered partitions) of n = k1 + k2 + ... . %F A213048 a(n) ~ c * n! * n^(log(2)) / (log(2))^n, where c = 0.9387523255426859866752735339706007723805611... . - _Vaclav Kotesovec_, May 03 2015 %e A213048 For n=2 the a(2) = 5 solutions are (1,2), (1|2), (2|1), (1|1), (2|2). %p A213048 a:= proc(n) option remember; %p A213048 `if`(n=0, 1, add(binomial(n+k-1, k)*a(n-k), k=1..n)) %p A213048 end: %p A213048 seq(a(n), n=0..25); %t A213048 a[n_] := a[n] = If[n==0, 1, Sum[Binomial[n+k-1, k] a[n-k], {k, 1, n}]]; %t A213048 a /@ Range[0, 25] (* _Jean-François Alcover_, Nov 21 2020 *) %Y A213048 Cf. A000670. %K A213048 nonn %O A213048 0,3 %A A213048 _Thomas Wieder_, Jun 03 2012