This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213050 #20 Oct 11 2021 04:38:10 %S A213050 5,13,29,37,53,61,101,149,173,181,197,269,293,317,349,373,389,421,461, %T A213050 509,541,557,613,653,661,677,701,709,757,773,797,821,829,853,877,941, %U A213050 1061,1109,1117,1213,1229,1237,1277,1301,1373,1381,1453,1493,1549,1621 %N A213050 Primes of the form 4*k+1 with primitive root +2. %C A213050 Primes p such that both +2 and -2 are primitive roots mod p. %C A213050 A001122 is the union of A213050 and A213051. %H A213050 Amiram Eldar, <a href="/A213050/b213050.txt">Table of n, a(n) for n = 1..10000</a> %t A213050 Select[Prime[Range[300]], Mod[#, 4] == 1 && PrimitiveRoot[#, 2] == 2&] (* _Jean-François Alcover_, Jul 22 2018 *) %o A213050 (PARI) %o A213050 { forprime (p=3, 10^4, %o A213050 rp = znorder(Mod(+2,p)); %o A213050 rm = znorder(Mod(-2,p)); %o A213050 if ( (rp==p-1) && (rm==p-1), print1(p,", ") ); %o A213050 );} %Y A213050 Cf. A213051 (primes 4*k+3 with primitive root +2). %Y A213050 Cf. A001122 (primitive root +2), A007885 (primitive root +2 or -2). %K A213050 nonn %O A213050 1,1 %A A213050 _Joerg Arndt_, Jun 03 2012