This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213052 #30 Jul 13 2018 08:20:12 %S A213052 3,5,53,173,293,2477,9173,22613,27653,61613,74093,92333,170957,360293, %T A213052 679733,847997,2004917,69009533,76553573,138473837,237536213, %U A213052 777133013,883597853,1728061733,2050312613,5534091197,9447241877,49107823133,65315700413 %N A213052 Increasing sequence of primes p such that all of 2,3,5,...,prime(n) are primitive roots mod p. %C A213052 a(32) > 10^12. - _Dana Jacobsen_, Jul 13 2018 %H A213052 Dana Jacobsen, <a href="/A213052/b213052.txt">Table of n, a(n) for n = 1..31</a> %o A213052 (PARI) %o A213052 N=10^10; %o A213052 default(primelimit,N); %o A213052 A=2; %o A213052 { forprime (p=3, N, %o A213052 q = 1; %o A213052 forprime (a=2, A, %o A213052 if ( znorder(Mod(a,p)) != p-1, q=0; break() ); %o A213052 ); %o A213052 if ( q, A=nextprime(A+1); print1(p,", ") ); %o A213052 );} %o A213052 (Perl) %o A213052 use Math::Prime::Util ":all"; %o A213052 my($N,$A,$p,$a,@P7) = (10**11,2); %o A213052 forprimes { $p=$_; %o A213052 if ( is_primitive_root(2,$p) %o A213052 && ($A < 3 || is_primitive_root(3,$p)) %o A213052 && ($A < 5 || is_primitive_root(5,$p)) %o A213052 && ($A < 7 || vecall { is_primitive_root($_,$p) } @P7) %o A213052 ) { %o A213052 print "$p\n"; %o A213052 $A = next_prime($A); %o A213052 push @P7, $A if $A >= 7; %o A213052 } %o A213052 } 3,$N; %o A213052 # _Dana Jacobsen_, Jul 11 2018 %K A213052 nonn,hard %O A213052 1,1 %A A213052 _Joerg Arndt_, Jun 03 2012 %E A213052 a(20)-a(27) from _Joerg Arndt_, Apr 10 2016 %E A213052 a(28)-a(29) from _Dana Jacobsen_, Jul 11 2018