cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213063 Balanced numbers (of order one): k-almost primes that are the average of three successive k-almost primes.

Original entry on oeis.org

5, 34, 53, 68, 86, 94, 102, 122, 142, 157, 171, 173, 185, 188, 194, 202, 204, 211, 214, 218, 245, 257, 258, 262, 263, 285, 289, 302, 314, 321, 338, 342, 358, 366, 371, 373, 394, 404, 407, 413, 415, 422, 429, 435, 446, 471, 489, 490, 493, 497, 507, 513, 517, 524, 535, 562
Offset: 1

Views

Author

Gerasimov Sergey, Jun 03 2012

Keywords

Comments

Balanced numbers of order one: defined by the union of balanced primes A006562, balanced semiprimes A213025, balanced 3-almost primes (68, 102, 171, 188, 245, 258, 285, 338, 366, 404, 429, 435, 507, 524,..), balanced 4-almost primes (204, 342, 490, 513,..),.., balanced k-almost primes - all of order one.
Balanced numbers of order two are 79, 119, 148, 205, 218, 281, 299, 302, 339, 349, 410, 439, 493,.., defined by the union of balanced primes of order two of A082077, balanced semiprimes of order two (119, 205, 218, 299, 302, 339, 493,..), balanced 3-almost primes of order two (148, 410, 604, 609, 642..),.., balanced k-almost primes of order two.

Crossrefs

Programs

  • PARI
    list(lim)={
    lim=lim\1+.5;
    my(v=List(),L=log(lim)\log(2),left=vector(L),middle=vector(L),t);
    for(n=3,2*lim,
    t=bigomega(n);
    if(t>L,next);
    if(middle[t],
    if(2*middle[t] == left[t] + n,
    if(middle[t] < lim,
    listput(v,middle[t])
    ,
    if(vecmin(middle) > lim, return(vecsort(Vec(v))))
    )
    );
    left[t]=middle[t];
    middle[t]=n
    ,
    if(left[t],middle[t]=n,left[t]=n)
    )
    )
    }; \\ Charles R Greathouse IV, Jun 14 2012