This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213074 #45 May 26 2016 02:14:08 %S A213074 1,1,1,2,1,3,1,7,8,1,10,14,1,17,50,36,1,24,89,78,1,36,207,368,200,1, %T A213074 49,340,701,431,1,70,685,2190,2756,1188,1,93,1075,3935,5564,2658 %N A213074 Irregular triangle read by rows: coefficients c(n,k) (n>=2, 0<=k<= floor((n-2)/2)) in formula for number of restricted partitions. %C A213074 Let T^(n)_m denote the number of partitions of mn that can be obtained by adding together m (not necessarily distinct) partitions of n (see A213086). For T^(n)_2, T^(n)_3, T^(n)_4, T^(n)_5 see A002219 through A002222. %C A213074 Metropolis and Stein show that T^(n)_m is given by the formula %C A213074 T^(n)_m = Sum_{k=0..n-g-1} binomial(m+g,g+k) c(n,k), where g = floor((n+1)/2). %H A213074 N. Metropolis and P. R. Stein, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80091-6">An elementary solution to a problem in restricted partitions</a>, J. Combin. Theory, 9 (1970), 365-376. %e A213074 Triangle c(n,k) begins: %e A213074 n\k %e A213074 - 0 1 2 3 4 5 ... %e A213074 --------------------------------- %e A213074 2 1 %e A213074 3 1 %e A213074 4 1 2 %e A213074 5 1 3 %e A213074 6 1 7 8 %e A213074 7 1 10 14 %e A213074 8 1 17 50 36 %e A213074 9 1 24 89 78 %e A213074 10 1 36 207 368 200 %e A213074 11 1 49 340 701 431 %e A213074 12 1 70 685 2190 2756 1188 %e A213074 13 1 93 1075 3935 5564 2658 %e A213074 ... %p A213074 with(combinat): %p A213074 h:= proc(n, m) option remember; %p A213074 `if`(m>1, map(x-> map(y-> sort([x[], y[]]), h(n, 1))[], %p A213074 h(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x), %p A213074 {partition(n)[]}), {[]})) %p A213074 end: %p A213074 T:= proc(n) local i, g, t; %p A213074 g:= floor((n+1)/2); %p A213074 subs(solve({seq(nops(h(n, t))=add(c||i *binomial(t+g, g+i), %p A213074 i=0..n-g-1), t=1..n-g)}, {seq(c||i, i=0..n-g-1)}), %p A213074 [seq(c||i, i=0..n-g-1)])[] %p A213074 end: %p A213074 seq(T(n), n=2..10); # _Alois P. Heinz_, Jul 11 2012 %t A213074 nmax = 13; mmax = 5; %t A213074 T[n_, m_] := T[n, m] = Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ip]; i[0] = 1; Table[ Join[ Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k - 1], lg}, {k, 1, m}]]] // Flatten[#, m - 1] & // Union // Length]; T[_, 0] = 1; %t A213074 U[n_, m_] := With[{g = Floor[(n + 1)/2]}, If[n == 1, 1, Sum[Binomial[m + g, g + k] c[n, k], {k, 0, n - g - 1}]]]; %t A213074 Do[TT = Table[T[n , m] - U[n , m], {n, 1, nmax}, {m, 0, mm}] // Flatten; c[_, 0] = 1; sol = Solve[Thread[TT == 0]][[1]]; cc = Table[c[n, k], {n, 2, nmax}, {k, 0, Floor[(n - 2)/2]}] /. sol // Flatten; Print[cc], {mm, 2, mmax}]; %t A213074 cc (* _Jean-François Alcover_, May 25 2016 *) %Y A213074 Cf. A000041, A002219, A002220, A002221, A002222, A213075, A213076, A213086. %K A213074 nonn,tabf,more %O A213074 2,4 %A A213074 _N. J. A. Sloane_, Jun 04 2012 %E A213074 12 more terms (rows 12-13) from _Alois P. Heinz_, Jul 11 2012