cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213074 Irregular triangle read by rows: coefficients c(n,k) (n>=2, 0<=k<= floor((n-2)/2)) in formula for number of restricted partitions.

This page as a plain text file.
%I A213074 #45 May 26 2016 02:14:08
%S A213074 1,1,1,2,1,3,1,7,8,1,10,14,1,17,50,36,1,24,89,78,1,36,207,368,200,1,
%T A213074 49,340,701,431,1,70,685,2190,2756,1188,1,93,1075,3935,5564,2658
%N A213074 Irregular triangle read by rows: coefficients c(n,k) (n>=2, 0<=k<= floor((n-2)/2)) in formula for number of restricted partitions.
%C A213074 Let T^(n)_m denote the number of partitions of mn that can be obtained by adding together m (not necessarily distinct) partitions of n (see A213086). For T^(n)_2, T^(n)_3, T^(n)_4, T^(n)_5 see A002219 through A002222.
%C A213074 Metropolis and Stein show that T^(n)_m is given by the formula
%C A213074 T^(n)_m = Sum_{k=0..n-g-1} binomial(m+g,g+k) c(n,k), where g = floor((n+1)/2).
%H A213074 N. Metropolis and P. R. Stein, <a href="http://dx.doi.org/10.1016/S0021-9800(70)80091-6">An elementary solution to a problem in restricted partitions</a>, J. Combin. Theory, 9 (1970), 365-376.
%e A213074 Triangle c(n,k) begins:
%e A213074 n\k
%e A213074 -  0    1    2    3    4    5 ...
%e A213074 ---------------------------------
%e A213074 2  1
%e A213074 3  1
%e A213074 4  1    2
%e A213074 5  1    3
%e A213074 6  1    7    8
%e A213074 7  1   10   14
%e A213074 8  1   17   50   36
%e A213074 9  1   24   89   78
%e A213074 10 1   36  207  368  200
%e A213074 11 1   49  340  701  431
%e A213074 12 1   70  685 2190 2756 1188
%e A213074 13 1   93 1075 3935 5564 2658
%e A213074 ...
%p A213074 with(combinat):
%p A213074 h:= proc(n, m) option remember;
%p A213074       `if`(m>1, map(x-> map(y-> sort([x[], y[]]), h(n, 1))[],
%p A213074        h(n, m-1)), `if`(m=1, map(x->map(y-> `if`(y>1, y-1, NULL), x),
%p A213074        {partition(n)[]}), {[]}))
%p A213074     end:
%p A213074 T:= proc(n) local i, g, t;
%p A213074       g:= floor((n+1)/2);
%p A213074       subs(solve({seq(nops(h(n, t))=add(c||i *binomial(t+g, g+i),
%p A213074       i=0..n-g-1), t=1..n-g)}, {seq(c||i, i=0..n-g-1)}),
%p A213074       [seq(c||i, i=0..n-g-1)])[]
%p A213074     end:
%p A213074 seq(T(n), n=2..10);  # _Alois P. Heinz_, Jul 11 2012
%t A213074 nmax = 13; mmax = 5;
%t A213074 T[n_, m_] := T[n, m] = Module[{ip, lg, i}, ip = IntegerPartitions[n]; lg = Length[ip]; i[0] = 1; Table[ Join[ Sequence @@ Table[ip[[i[k]]], {k, 1, m}]] // Sort, Evaluate[Sequence @@ Table[{i[k], i[k - 1], lg}, {k, 1, m}]]] // Flatten[#, m - 1] & // Union // Length]; T[_, 0] = 1;
%t A213074 U[n_, m_] := With[{g = Floor[(n + 1)/2]}, If[n == 1, 1, Sum[Binomial[m + g, g + k] c[n, k], {k, 0, n - g - 1}]]];
%t A213074 Do[TT = Table[T[n , m] - U[n , m], {n, 1, nmax}, {m, 0, mm}] // Flatten; c[_, 0] = 1; sol = Solve[Thread[TT == 0]][[1]]; cc = Table[c[n, k], {n, 2, nmax}, {k, 0, Floor[(n - 2)/2]}] /. sol // Flatten; Print[cc], {mm, 2, mmax}];
%t A213074 cc (* _Jean-François Alcover_, May 25 2016 *)
%Y A213074 Cf. A000041, A002219, A002220, A002221, A002222, A213075, A213076, A213086.
%K A213074 nonn,tabf,more
%O A213074 2,4
%A A213074 _N. J. A. Sloane_, Jun 04 2012
%E A213074 12 more terms (rows 12-13) from _Alois P. Heinz_, Jul 11 2012