A306366 For any sequence s of positive integers without infinitely many consecutive equal terms, let T(s) be the sequence obtained by replacing each run, say of k consecutive t's, with a run of t consecutive k's; this sequence corresponds to T(K) (where K denotes the Kolakoski sequence A000002).
1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1
Offset: 1
Examples
The first terms of the Kolakoski sequence are: +-----+ +--+ +-----+ +-----+ +-- | | | | | | | | | +--+ +-----+ +--+ +--+ +-----+ |#1|#2 |#3 |#4|#5|#6 |#7|#8 |#9 |#10 ... +--+-----+-----+--+--+-----+--+-----+-----+-- 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, ... . The first terms of this sequence are: +-----+--+ +-----+ +-----+-- | . | | | | . +--+ . +-----+--+ +--+ . |#1|#2 .#3|#4 .#5|#6 |#7|#8 .#9 ... +--+-----+--+-----+--+-----+--+-----+-- 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, ...
Links
- Rémy Sigrist, PARI program for A306366
Programs
-
PARI
See Links section.
Comments