This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213104 #16 Nov 06 2019 04:22:05 %S A213104 1,1,5,40,360,3820,43651,543240,7146185,98885725,1420274645, %T A213104 21037156031,319127602075,4935547265370,77525696636995, %U A213104 1233356748777015,19829269320322346,321631227310756885,5255920261950786655,86436636022328320125,1429253483704685851315 %N A213104 G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^10)^5. %C A213104 Compare definition of g.f. to: %C A213104 (1) B(x) = 1 + x/B(-x*B(x)) when B(x) = 1/(1-x). %C A213104 (2) C(x) = 1 + x/C(-x*C(x)^3)^2 when C(x) = 1 + x*C(x)^2 (A000108). %C A213104 (3) D(x) = 1 + x/D(-x*D(x)^5)^3 when D(x) = 1 + x*D(x)^3 (A001764). %C A213104 (4) E(x) = 1 + x/E(-x*E(x)^7)^4 when E(x) = 1 + x*E(x)^4 (A002293). %C A213104 (5) F(x) = 1 + x/F(-x*F(x)^9)^5 when F(x) = 1 + x*F(x)^5 (A002294). %C A213104 (6) G(x) = 1 + x/G(-x*G(x)^11)^6 when G(x) = 1 + x*G(x)^6 (A002295). %C A213104 The first negative term is a(306). - _Georg Fischer_, Feb 16 2019 %H A213104 Paul D. Hanna, <a href="/A213104/b213104.txt">Table of n, a(n) for n = 0..400</a> %e A213104 G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 360*x^4 + 3820*x^5 + 43651*x^6 +... %e A213104 Related expansions: %e A213104 A(x)^10 = 1 + 10*x + 95*x^2 + 970*x^3 + 10335*x^4 + 116452*x^5 +... %e A213104 A(-x*A(x)^10)^5 = 1 - 5*x - 15*x^2 - 85*x^3 - 995*x^4 - 10776*x^5 -... %t A213104 m = 21; A[_] = 1; Do[A[x_] = 1 + x/A[-x A[x]^10]^5 + O[x]^m, {m}]; %t A213104 CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 06 2019 *) %o A213104 (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^5,x,-x*subst(A^10,x,x+x*O(x^n))) );polcoeff(A,n)} %o A213104 for(n=0,30,print1(a(n),", ")) %Y A213104 Cf. A000108, A001764, A002293, A002294, A002295, A213091, A213092, A213093, A213094, A213095, A213096, A213098, A213099, A213100, A213101, A213102, A213103, A213105. %K A213104 sign %O A213104 0,3 %A A213104 _Paul D. Hanna_, Jun 05 2012