This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213113 #5 Jun 06 2012 01:05:33 %S A213113 1,1,7,154,4681,228076,14299129,1138327282,108153498625, %T A213113 11945906543512,1500579818594641,210620216812835446, %U A213113 32619162944121580369,5512919937646519781956,1007971183370936380058233,197907153405452704613136466,41467801090663272520003650049 %N A213113 E.g.f.: A(x) = exp( x/A(-x*A(x)^9)^3 ). %C A213113 Compare the e.g.f. to: %C A213113 (1) W(x) = exp(x/W(-x*W(x)^2)^1) when W(x) = Sum_{n>=0} (1*n+1)^(n-1)*x^n/n!. %C A213113 (2) W(x) = exp(x/W(-x*W(x)^4)^2) when W(x) = Sum_{n>=0} (2*n+1)^(n-1)*x^n/n!. %C A213113 (3) W(x) = exp(x/W(-x*W(x)^6)^3) when W(x) = Sum_{n>=0} (3*n+1)^(n-1)*x^n/n!. %C A213113 (4) W(x) = exp(x/W(-x*W(x)^8)^4) when W(x) = Sum_{n>=0} (4*n+1)^(n-1)*x^n/n!. %e A213113 E.g.f.: A(x) = 1 + x + 7*x^2/2! + 154*x^3/3! + 4681*x^4/4! + 228076*x^5/5! +... %e A213113 Related expansions: %e A213113 A(x)^3 = 1 + 3*x + 27*x^2/2! + 594*x^3/3! + 18873*x^4/4! + 902988*x^5/5! +... %e A213113 A(x)^9 = 1 + 9*x + 135*x^2/2! + 3402*x^3/3! + 121257*x^4/4! + 5887404*x^5/5! +... %e A213113 1/A(-x*A(x)^9)^3 = 1 + 3*x + 45*x^2/2! + 999*x^3/3! + 39609*x^4/4! +... %e A213113 The logarithm of the e.g.f., log(A(x)) = x/A(-x*A(x)^9)^3, begins: %e A213113 log(A(x)) = x + 6*x^2/2! + 135*x^3/3! + 3996*x^4/4! + 198045*x^5/5! +... %o A213113 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=exp(x/subst(A^3,x,-x*A^9+x*O(x^n))));n!*polcoeff(A,n)} %o A213113 for(n=0,25,print1(a(n),", ")) %Y A213113 Cf. A213108, A213109, A213110, A213111, A213112. %K A213113 nonn %O A213113 0,3 %A A213113 _Paul D. Hanna_, Jun 05 2012