A213114 Number of binary arrays of length n+7 with fewer than 4 ones in any length 8 subsequence (=less than 50% duty cycle).
93, 151, 252, 424, 714, 1198, 1996, 3292, 5359, 8758, 14401, 23772, 39313, 65046, 107572, 177700, 293113, 483115, 796360, 1313385, 2167141, 3576909, 5904270, 9745234, 16082476, 26536889, 43783532, 72238736, 119193082, 196678607
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1....0....1....0....1....1....1....1....0....1....1....1....0....0....0....0 ..0....0....0....1....1....0....1....1....1....0....1....0....0....1....0....0 ..0....1....0....0....0....1....1....0....0....0....0....0....1....1....0....1 ..1....0....0....0....1....0....0....1....0....0....0....0....0....0....0....0 ..0....0....0....0....0....0....0....0....1....1....0....0....0....1....0....1 ..0....1....1....0....0....0....0....0....1....0....0....0....0....0....0....1 ..0....0....0....0....0....1....0....0....0....0....1....0....1....0....1....0 ..0....0....1....0....0....0....0....0....0....1....0....0....0....0....1....0 ..1....0....0....0....1....0....0....1....0....0....0....1....0....0....0....0 ..1....1....1....0....0....1....1....1....1....0....1....0....1....0....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +a(n-3) +a(n-6) +a(n-7) +7*a(n-8) +a(n-9) -6*a(n-11) -3*a(n-12) -a(n-13) -5*a(n-14) -a(n-15) -21*a(n-16) -13*a(n-17) -5*a(n-18) +14*a(n-19) +9*a(n-20) -a(n-21) +10*a(n-22) +35*a(n-24) +22*a(n-25) +5*a(n-26) -20*a(n-27) -9*a(n-28) -a(n-29) -10*a(n-30) -a(n-31) -35*a(n-32) -13*a(n-33) +15*a(n-35) +3*a(n-36) +5*a(n-38) +a(n-39) +21*a(n-40) +a(n-41) -6*a(n-43) -a(n-46) -7*a(n-48) +a(n-49) +a(n-51) +a(n-56)
Comments