This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213126 #26 Oct 01 2023 16:34:02 %S A213126 1,1,1,1,0,1,1,1,1,1,1,2,2,2,1,1,3,4,4,3,1,1,4,1,2,1,4,1,1,5,5,3,3,5, %T A213126 5,1,1,6,2,0,6,0,2,6,1,1,7,8,2,6,6,2,8,7,1,1,8,5,0,8,2,8,0,5,8,1,1,9, %U A213126 2,5,8,10,10,8,5,2,9,1,1,10,11,7,1,6,8,6 %N A213126 Rows of triangle formed using Pascal's rule, except sums in the n-th row are modulo n: T(n,0) = T(n,n) = 1 and T(n,k) = (T(n-1,k-1) + T(n-1,k)) mod n. %e A213126 Triangle begins: %e A213126 1; %e A213126 1, 1; %e A213126 1, 0, 1; %e A213126 1, 1, 1, 1; %e A213126 1, 2, 2, 2, 1; %e A213126 1, 3, 4, 4, 3, 1; %e A213126 1, 4, 1, 2, 1, 4, 1; %e A213126 1, 5, 5, 3, 3, 5, 5, 1; %e A213126 1, 6, 2, 0, 6, 0, 2, 6, 1; %e A213126 1, 7, 8, 2, 6, 6, 2, 8, 7, 1; %e A213126 1, 8, 5, 0, 8, 2, 8, 0, 5, 8, 1; %e A213126 1, 9, 2, 5, 8, 10, 10, 8, 5, 2, 9, 1; %t A213126 T[n_,k_]:=If[k==0 || k==n, 1, Mod[T[n - 1, k - 1] + T[n- 1, k], n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* _Indranil Ghosh_, Apr 29 2017 *) %o A213126 (Python) %o A213126 src = [0]*1024 %o A213126 dst = [0]*1024 %o A213126 for n in range(19): %o A213126 dst[0] = dst[n] = 1 %o A213126 for k in range(1, n): %o A213126 dst[k] = (src[k-1]+src[k]) % n %o A213126 for k in range(n+1): %o A213126 src[k] = dst[k] %o A213126 print(dst[k], end=',') %Y A213126 Cf. A007318 - Pascal's triangle read by rows. %Y A213126 Cf. A047999, A083093, A034931, A034930, A034932, A008975. %K A213126 nonn,tabl %O A213126 0,12 %A A213126 _Alex Ratushnyak_, Jun 06 2012 %E A213126 Offset corrected by _Joerg Arndt_, Dec 05 2016