This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213134 #22 Nov 20 2024 15:54:29 %S A213134 1,-2,-6,22,426,598,-54006,-568778,8381226,277762198,-123822006, %T A213134 -141432141578,-1958226061974,70457642899798,2812274227385994, %U A213134 -17169209695778378,-3417280244608089174,-48220222006064346602 %N A213134 Polylogarithm li(-n,-2/5) multiplied by (7^(n+1))/5. %C A213134 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=5. %H A213134 Seiichi Manyama, <a href="/A213134/b213134.txt">Table of n, a(n) for n = 0..399</a> (terms 0..100 from Stanislav Sykora) %F A213134 See formula in A212846, setting p=2,q=5. %F A213134 a(n) = Sum_{k=0..n} k! * (-2)^k * 7^(n-k) * Stirling2(n,k). - _Seiichi Manyama_, Mar 13 2022 %e A213134 polylog(-5,-2/5)*7^6/5 = 598. %t A213134 f[n_] := PolyLog[-n, -2/5] 7^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *) %o A213134 (PARI) \\ in A212846; run limnpq(nmax, 2, 5) %o A213134 (PARI) a(n) = sum(k=0, n, k!*(-2)^k*7^(n-k)*stirling(n, k, 2)); \\ _Seiichi Manyama_, Mar 13 2022 %Y A213134 Cf. A212846, A210246, A212847, A213127 to A213133. %Y A213134 Cf. A213135 to A213157. %K A213134 sign %O A213134 0,2 %A A213134 _Stanislav Sykora_, Jun 06 2012