cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213134 Polylogarithm li(-n,-2/5) multiplied by (7^(n+1))/5.

This page as a plain text file.
%I A213134 #22 Nov 20 2024 15:54:29
%S A213134 1,-2,-6,22,426,598,-54006,-568778,8381226,277762198,-123822006,
%T A213134 -141432141578,-1958226061974,70457642899798,2812274227385994,
%U A213134 -17169209695778378,-3417280244608089174,-48220222006064346602
%N A213134 Polylogarithm li(-n,-2/5) multiplied by (7^(n+1))/5.
%C A213134 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=5.
%H A213134 Seiichi Manyama, <a href="/A213134/b213134.txt">Table of n, a(n) for n = 0..399</a> (terms 0..100 from Stanislav Sykora)
%F A213134 See formula in A212846, setting p=2,q=5.
%F A213134 a(n) = Sum_{k=0..n} k! * (-2)^k * 7^(n-k) * Stirling2(n,k). - _Seiichi Manyama_, Mar 13 2022
%e A213134 polylog(-5,-2/5)*7^6/5 = 598.
%t A213134 f[n_] := PolyLog[-n, -2/5] 7^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213134 (PARI) \\ in A212846; run limnpq(nmax, 2, 5)
%o A213134 (PARI) a(n) = sum(k=0, n, k!*(-2)^k*7^(n-k)*stirling(n, k, 2)); \\ _Seiichi Manyama_, Mar 13 2022
%Y A213134 Cf. A212846, A210246, A212847, A213127 to A213133.
%Y A213134 Cf. A213135 to A213157.
%K A213134 sign
%O A213134 0,2
%A A213134 _Stanislav Sykora_, Jun 06 2012