This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213135 #16 Mar 13 2022 11:15:31 %S A213135 1,-2,-10,6,870,7878,-90810,-3599514,-20802330,1466193798,42164160390, %T A213135 -227736774234,-44798359213530,-896477167975482,32992662466363590, %U A213135 2308652347666959846,16747450938362727270,-3885313022633595475962 %N A213135 Polylogarithm li(-n,-2/7) multiplied by (9^(n+1))/7. %C A213135 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=2,q=7. %H A213135 Stanislav Sykora, <a href="/A213135/b213135.txt">Table of n, a(n) for n = 0..100</a> %F A213135 See formula in A212846, setting p=2,q=7. %F A213135 a(n) = Sum_{k=0..n} k! * (-2)^k * 9^(n-k) * Stirling2(n,k). - _Seiichi Manyama_, Mar 13 2022 %e A213135 polylog(-5,-2/7)*9^6/7 = 7878. %t A213135 f[n_] := PolyLog[-n, -2/7] 9^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *) %o A213135 (PARI) in A212846; run limnpq(nmax, 2, 7) %o A213135 (PARI) a(n) = sum(k=0, n, k!*(-2)^k*9^(n-k)*stirling(n, k, 2)); \\ _Seiichi Manyama_, Mar 13 2022 %Y A213135 Cf. A212846, A210246, A212847, A213127 to A213134. %Y A213135 Cf. A213136 to A213157. %K A213135 sign %O A213135 0,2 %A A213135 _Stanislav Sykora_, Jun 06 2012