cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213139 Polylogarithm li(-n,-3/7) multiplied by (10^(n+1))/7.

This page as a plain text file.
%I A213139 #9 Dec 26 2015 02:07:07
%S A213139 1,-3,-12,78,1824,240,-513120,-5857680,196293120,6811964160,
%T A213139 -57818956800,-8095402329600,-83402198630400,10192670228889600,
%U A213139 371764953132748800,-11291351664942336000,-1131884186768228352000
%N A213139 Polylogarithm li(-n,-3/7) multiplied by (10^(n+1))/7.
%C A213139 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=3,q=7.
%H A213139 Stanislav Sykora, <a href="/A213139/b213139.txt">Table of n, a(n) for n = 0..100</a>
%F A213139 See formula in A212846, setting p=3,q=7.
%e A213139 polylog(-5,-3/7)*10^6/7 = 240
%t A213139 f[n_] := PolyLog[-n, -3/7] 10^(n + 1)/7; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213139 (PARI) in A212846; run limnpq(nmax, 3, 7)
%Y A213139 Cf. A212846, A210246, A212847, A213127 to A213138.
%Y A213139 Cf. A213140 to A213157.
%K A213139 sign
%O A213139 0,2
%A A213139 _Stanislav Sykora_, Jun 06 2012