cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213142 Polylogarithm li(-n,-4/5) multiplied by (9^(n+1))/5.

This page as a plain text file.
%I A213142 #12 Jul 26 2025 14:38:06
%S A213142 1,-4,-4,156,636,-23844,-213444,7561116,122079996,-3999858084,
%T A213142 -105913993284,3121006139676,129328349560956,-3294956189426724,
%U A213142 -210883838041123524,4369388083699591836,441597580986548139516
%N A213142 Polylogarithm li(-n,-4/5) multiplied by (9^(n+1))/5.
%C A213142 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=4,q=5.
%H A213142 Stanislav Sykora, <a href="/A213142/b213142.txt">Table of n, a(n) for n = 0..100</a>
%F A213142 See formula in A212846, setting p=4,q=5.
%e A213142 polylog(-5,-4/5)*9^6/5 = -23844.
%t A213142 f[n_] := PolyLog[-n, -4/5] 9^(n + 1)/5; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213142 (PARI) \\ in A212846; run limnpq(nmax,4,5)
%Y A213142 Cf. A212846, A210246, A212847, A213127 to A213141.
%Y A213142 Cf. A213143 to A213157.
%K A213142 sign
%O A213142 0,2
%A A213142 _Stanislav Sykora_, Jun 06 2012