cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A213146 Polylogarithm li(-n,-5/7) multiplied by (12^(n+1))/7.

Original entry on oeis.org

1, -5, -10, 330, 2760, -82680, -1593360, 40988880, 1552095360, -31261956480, -2267818248960, 29423279911680, 4603691259048960, -17797429029473280, -12287671292043970560, -95184807512707307520
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=7.

Examples

			polylog(-5,-5/7)*12^6/7 = -82680.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 7; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 7)

Formula

See formula in A212846, setting p=5,q=7.

A213148 Polylogarithm li(-n,-5/9) multiplied by (14^(n+1))/9.

Original entry on oeis.org

1, -5, -20, 370, 6880, -84080, -4764320, 13835920, 5296238080, 57709630720, -8215749893120, -267412364065280, 15638020342497280, 1127961849051627520, -29166891598121553920, -5249813654826672404480
Offset: 0

Views

Author

Stanislav Sykora, Jun 06 2012

Keywords

Comments

See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=5,q=9.

Examples

			polylog(-5,-5/9)*14^6/9 = -84080.
		

Crossrefs

Programs

  • Mathematica
    p = 5; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    \\ in A212846; run limnpq(nmax, 5, 9)

Formula

See formula in A212846, setting p=5,q=9.
Showing 1-2 of 2 results.