cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213149 Polylogarithm li(-n,-6/7) multiplied by (13^(n+1))/7.

This page as a plain text file.
%I A213149 #13 Jul 26 2025 14:37:40
%S A213149 1,-6,-6,498,2010,-163806,-1426326,113319858,1731433530,-133040247486,
%T A213149 -3200805321846,235719742497618,8363215587567450,-584103976037953566,
%U A213149 -29313609779751086166,1917198413998763777778
%N A213149 Polylogarithm li(-n,-6/7) multiplied by (13^(n+1))/7.
%C A213149 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=6,q=7.
%H A213149 Stanislav Sykora, <a href="/A213149/b213149.txt">Table of n, a(n) for n = 0..100</a>
%F A213149 See formula in A212846, setting p=6,q=7.
%e A213149 polylog(-5,-6/7)*13^6/7 = -163806.
%t A213149 p = 6; q = 7; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213149 (PARI) \\ in A212846; run limnpq(nmax, 6, 7)
%Y A213149 Cf. A212846, A210246, A212847, A213127 to A213148.
%Y A213149 Cf. A213150 to A213157.
%K A213149 sign
%O A213149 0,2
%A A213149 _Stanislav Sykora_, Jun 06 2012