cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213150 Polylogarithm li(-n,-7/8) multiplied by (15^(n+1))/8.

This page as a plain text file.
%I A213150 #13 Oct 01 2024 15:25:19
%S A213150 1,-7,-7,777,3129,-342615,-2965095,318612105,4810567545,-504410403735,
%T A213150 -11895756971175,1209591806193225,41613411780711225,
%U A213150 -4074816146460117975,-195459943548067129575,18284823353530418351625
%N A213150 Polylogarithm li(-n,-7/8) multiplied by (15^(n+1))/8.
%C A213150 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=7,q=8.
%H A213150 Stanislav Sykora, <a href="/A213150/b213150.txt">Table of n, a(n) for n = 0..100</a>
%F A213150 See formula in A212846, setting p=7,q=8.
%e A213150 polylog(-5,-7/8)*15^6/8 = -342615.
%t A213150 p = 7; q = 8; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213150 (PARI) \\ in A212846; run limnpq(nmax, 7, 8)
%Y A213150 Cf. A212846, A210246, A212847, A213127 to A213149.
%Y A213150 Cf. A213151 to A213157.
%K A213150 sign
%O A213150 0,2
%A A213150 _Stanislav Sykora_, Jun 06 2012