cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213151 Polylogarithm li(-n,-7/9) multiplied by (16^(n+1))/9.

This page as a plain text file.
%I A213151 #9 Dec 26 2015 02:08:08
%S A213151 1,-7,-14,854,7000,-405832,-7373744,396878384,13211201920,
%T A213151 -640085041792,-35826474785024,1495566369860864,136414677606538240,
%U A213151 -4577281372443415552,-691769416923579029504,16372660554702059116544
%N A213151 Polylogarithm li(-n,-7/9) multiplied by (16^(n+1))/9.
%C A213151 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=7,q=9.
%H A213151 Stanislav Sykora, <a href="/A213151/b213151.txt">Table of n, a(n) for n = 0..100</a>
%F A213151 See formula in A212846, setting p=7,q=9.
%e A213151 polylog(-5,-7/9)*16^6/9 = -405832.
%t A213151 p = 7; q = 9; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213151 (PARI) in A212846; run limnpq(nmax, 7, 9)
%Y A213151 Cf. A212846, A210246, A212847, A213127 to A213150.
%Y A213151 Cf. A213152 to A213157.
%K A213151 sign
%O A213151 0,2
%A A213151 _Stanislav Sykora_, Jun 06 2012