cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213154 Polylogarithm li(-n,-9/10) multiplied by (19^(n+1))/10.

This page as a plain text file.
%I A213154 #9 Dec 26 2015 02:10:36
%S A213154 1,-9,-9,1611,6471,-1148589,-9872289,1732196331,25810293591,
%T A213154 -4461906502269,-102948316013169,17472999720383451,581452715402943111,
%U A213154 -96525920129033025549,-4413961128482041139649
%N A213154 Polylogarithm li(-n,-9/10) multiplied by (19^(n+1))/10.
%C A213154 See the sequence A212846 which describes the general case of li(-n,-p/q). This sequence is obtained for p=9,q=10.
%H A213154 Stanislav Sykora, <a href="/A213154/b213154.txt">Table of n, a(n) for n = 0..100</a>
%F A213154 See formula in A212846, setting p=9,q=10.
%e A213154 polylog(-5,-9/10)*19^6/10 = -1148589.
%t A213154 p = 9; q = 10; f[n_] := PolyLog[-n, -p/q] (p + q)^(n + 1)/q; f[0] = 1; Array[f, 20, 0] (* _Robert G. Wilson v_, Dec 25 2015 *)
%o A213154 (PARI) in A212846; run limnpq(nmax, 9, 10)
%Y A213154 Cf. A212846, A210246, A212847, A213127 to A213153.
%Y A213154 Cf. A213155 to A213157.
%K A213154 sign
%O A213154 0,2
%A A213154 _Stanislav Sykora_, Jun 06 2012