cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216248 T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2-1, if k=1 and (n mod 2)=1; T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n, k > 0.

Original entry on oeis.org

1, 2, 5, 3, 4, 6, 7, 10, 11, 14, 8, 9, 12, 13, 15, 16, 19, 20, 23, 24, 27, 17, 18, 21, 22, 25, 26, 28, 29, 32, 33, 36, 37, 40, 41, 44, 30, 31, 34, 35, 38, 39, 42, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 66, 67
Offset: 1

Views

Author

Boris Putievskiy, Mar 14 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(1,2), T(1,3), T(2,2), T(2,1), T(3,1);
. . .
T(1,2*m), T(1,2*m+1), T(2,2*m), T(2,2*m-1), T(3,2*m-2), ... T(2*m-1,2), T(2*m-1,3), T(2*m,2), T(2*m,1), T(2*m+1,1);
. . .
Movement along two adjacent antidiagonals - step to the east, step to the southwest, step to the west, step to the southwest and so on. The length of each step is 1.

Examples

			The start of the sequence as table:
1....2...3...7...8..16..17...
5....4..10...9..19..18..32...
6...11..12..20..21..33..34...
14..13..23..22..36..35..53...
15..24..25..37..38..54..55...
27..26..40..39..57..56..78...
28..41..42..58..59..79..80...
. . .
The start of the sequence as triangular array read by rows:
1;
2,5;
3,4,6;
7,10,11,14;
8,9,12,13,15;
16,19,20,23,24,27;
17,18,21,22,25,26,28;
. . .
The start of the sequence as array read by rows, the length of row number r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1;
2,5,3,4,6;
7,10,11,14,8,9,12,13,15;
16,19,20,23,24,27,17,18,21,22,25,26,28;
. . .
Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+4, 2*r*r-5*r+7, ... 2*r*r-r-2, 2*r*r-r.
		

Crossrefs

Cf. A213205, A213171, A213197, A210521; table T(n,k) contains: in rows A033816, A130883, A100037, A100038, A100039; in columns A000384, A071355, A014106, A091823, A130861.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3-(-1)**j-(t)*(-1)**t)/2
    if j==1 and (i%2)==1:
       result=result-1

Formula

As table
T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2-1, if k=1 and (n mod 2)=1;
T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2, else.
As linear sequence
a(n)=((t+2)^2-4*j+3-(-1)^j-(t)*(-1)^t)/2 -1, if j=1 and (i mod 2)=1;
a(n)=((t+2)^2-4*j+3-(-1)^j-(t)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A216249 T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2-2, if k=1 and (n mod 2)=1; T(n,k)=((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n , k > 0.

Original entry on oeis.org

1, 3, 2, 4, 5, 6, 8, 7, 12, 11, 9, 10, 13, 14, 15, 17, 16, 21, 20, 25, 24, 18, 19, 22, 23, 26, 27, 28, 30, 29, 34, 33, 38, 37, 42, 41, 31, 32, 35, 36, 39, 40, 43, 44, 45, 47, 46, 51, 50, 55, 54, 59, 58, 63, 62, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 66, 68, 67, 72, 71, 76, 75, 80, 79, 84, 83, 88, 87
Offset: 1

Views

Author

Boris Putievskiy, Mar 14 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(2,1), T(1,2), T(1,3), T(2,2), T(3,1);
. . .
T(2,2*m-1), T(1,2*m), T(1,2*m+1), T(2,2*m), T(2*m-3,4), ... T(2*m,1), T(2*m-1,2), T(2*m-1,3), T(2*m,2), T(2*m+1,1);
. . .
Movement along two adjacent antidiagonals - step to the northeast, step to the east, step to the southwest, 3 steps to the west, 2 steps to the south and so on.
The length of each step is 1.

Examples

			The start of the sequence as table:
   1   3  4    8   9  17  18...
   2   5  7   10  16  19  29...
   6  12  13  21  22  34  35...
  11  14  20  23  33  36  50...
  15  25  26  38  39  55  56...
  24  27  37  40  54  57  75...
  28  42  43  59  60  80  81...
  ...
The start of the sequence as triangular array read by rows:
   1;
   3,  2;
   4,  5,  6;
   8,  7, 12, 11;
   9, 10, 13, 14, 15;
  17, 16, 21, 20, 25, 24;
  18, 19, 22, 23, 26, 27, 28;
  ...
As an array read by rows, where the length of row number r is 4*r-3:
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last  2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
  1;
  3,   2,   4,   5,   6;
  8,   7,  12,  11,   9,  10,  13,  14,  15;
  17, 16,  21,  20,  25,  24,  18,  19,  22,  23,  26,  27,  28;
  ...
Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+5, 2*r*r-5*r+4, ...2*r*r-r-1, 2*r*r-r.
		

Crossrefs

Cf. A213205, A213171, A213197, A210521; table T(n,k) contains: in rows A100037, A033816, A130883, A100039, A100038; in columns A000384, A071355, A091823, A014106.

Programs

  • Mathematica
    T[n_, k_] := ((n+k)^2 - 4k + 3 - 2(-1)^n + (-1)^k - (n+k-4)(-1)^(n+k))/2 - 2Boole[k == 1 && OddQ[n]];
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 20 2019 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3+(-1)**j-2*(-1)**i-(t-2)*(-1)**t)/2
    if j==1 and (i%2)==1:
       result=result-2

Formula

As a table:
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2-2, if k=1 and (n mod 2)=1;
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n+(-1)^k-(n+k-4)*(-1)^(n+k))/2, else.
As a linear sequence:
a(n) = ((t+2)^2-4*j+3-2*(-1)^i+(-1)^j-(t-2)*(-1)^t)/2-2, if j=1 and (i mod 2)=1;
a(n) = ((t+2)^2-4*j+3-2*(-1)^i+(-1)^j-(t-2)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).

A216250 T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2-3, if k=1 and (n mod 2)=1; T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n, k > 0.

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 8, 11, 12, 10, 9, 14, 13, 15, 16, 17, 20, 21, 24, 25, 19, 18, 23, 22, 27, 26, 28, 29, 30, 33, 34, 37, 38, 41, 42, 32, 31, 36, 35, 40, 39, 44, 43, 45, 46, 47, 50, 51, 54, 55, 58, 59, 62, 63, 49, 48, 53, 52, 57, 56, 61, 60, 65, 64, 66, 67
Offset: 1

Views

Author

Boris Putievskiy, Mar 14 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2), T(1,3), T(3,1);
. . .
T(1,2*m), T(2,2*m-1), T(2,2*m), T(1,2*m+1), T(3,2*m-2), ... T(2*m-1,2), T(2*m,1), T(2*m,2), T(2*m-1,3), T(2*m+1,1);
. . .
Movement along two adjacent antidiagonals - step to the southwest, step east, step to the northeast, 3 steps to the west, 2 steps to the south and so on. The length of each step is 1.

Examples

			The start of the sequence as table:
  1....2...5...7..10..16..19...
  3....4...8...9..17..18..30...
  6...11..14..20..23..33..36...
  12..13..21..22..34..35..51...
  15..24..27..37..40..54..57...
  25..26..38..39..55..56..76...
  28..41..44..58..61..79..82...
  . . .
The start of the sequence as triangular array read by rows:
  1;
  2,3;
  5,4,6;
  7,8,11,12;
  10,9,14,13,15;
  16,17,20,21,24,25;
  19,18,23,22,27,26,28;
  . . .
The start of the sequence as array read by rows, with length of row r: 4*r-3:
First 2*r-2 numbers are from the row number 2*r-2 of above triangle array.
Last  2*r-1 numbers are from the row number 2*r-1 of above triangle array.
  1;
  2,3,5,4,6;
  7,8,11,12,10,9,14,13,15;
  16,17,20,21,24,25,19,18,23,22,27,26,28;
  . . .
Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-5*r+4, 2*r*r-5*r+5, ...2*r*r-r-2, 2*r*r-r.
		

Crossrefs

Cf. A213205, A213171, A213197, A210521; table T(n,k) contains: in rows A130883, A033816, A100037, A100038, A100039; in columns A000384, A014106, A071355, A091823, A130861.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3-(-1)**j-2*(-1)**i-(t-2)*(-1)**t)/2
    if j==1 and (i%2)==1:
       result=result-3

Formula

As table
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2-3, if k=1 and (n mod 2)=1;
T(n,k) = ((n+k)^2-4*k+3-2*(-1)^n-(-1)^k-(n+k-4)*(-1)^(n+k))/2, else.
As linear sequence
a(n) = ((t+2)^2-4*j+3-2*(-1)^i-(-1)^j-(t-2)*(-1)^t)/2-3, if j=1 and (i mod 2)=1;
a(n) = ((t+2)^2-4*j+3-2*(-1)^i-(-1)^j-(t-2)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Showing 1-3 of 3 results.