cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213172 Floor of the Euclidean distance of a point on the (1, 2, 3; 4, 5, 6) 3D walk.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 12, 16, 21, 26, 32, 38, 45, 52, 61, 69, 78, 88, 99, 110, 121, 133, 146, 159, 173, 188, 203, 218, 234, 251, 268, 286, 305, 324, 343, 364, 384, 406, 428, 450, 473, 497, 521, 546, 571, 597, 624, 651, 679, 707, 736, 765, 795, 826, 857
Offset: 0

Views

Author

Jon Perry, Apr 14 2013

Keywords

Comments

Consider a standard 3-dimensional Euclidean lattice. We take 1 step along the positive x-axis, 2 along the positive y-axis, 3 along the positive z-axis, 4 along the positive x-axis, and so on. This sequence gives the floor of the Euclidean distance to the origin after n steps.
The (x,y,z) coordinates are (1,0,0), (1,2,0), (1,2,3), (5,2,3), (5,7,3), (5,7,9), (12,7,9) etc, where the x values run through A000326, the y-values through A005449, and the z-values through A045943. The squared Euclidean distances are s(n) = 1, 5, 14, 38, 83, 155, 274, 450,..., which obey the recurrence s(n) = 3*s(n-1) -3*s(n-2) +3*s(n-3) -6*s(n-4) +6*s(n-5) -3*s(n-6) +3*s(n-7) -3*s(n-8) +s(n-9), s(n) = (3*n^2+9*n+10)^2/108 +4*A099837(n+3)/27 -2*(-1)^n*A165202(n)/9, with a = floor(sqrt(s(n))). - R. J. Mathar, May 02 2013

Examples

			For a(4) we are at [5,2,3], so a(n) = floor(sqrt(25+4+9)) = 6.
		

Crossrefs

Programs

  • JavaScript
    p=new Array(0,0,0);
    for (a=0;a<100;a++) {
    p[a%3]+=a;
    document.write(Math.floor(Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]))+", ");
    }

Formula

a(n) ~ n^2 sqrt(3)/6. - Charles R Greathouse IV, May 02 2013