A213172 Floor of the Euclidean distance of a point on the (1, 2, 3; 4, 5, 6) 3D walk.
0, 1, 2, 3, 6, 9, 12, 16, 21, 26, 32, 38, 45, 52, 61, 69, 78, 88, 99, 110, 121, 133, 146, 159, 173, 188, 203, 218, 234, 251, 268, 286, 305, 324, 343, 364, 384, 406, 428, 450, 473, 497, 521, 546, 571, 597, 624, 651, 679, 707, 736, 765, 795, 826, 857
Offset: 0
Keywords
Examples
For a(4) we are at [5,2,3], so a(n) = floor(sqrt(25+4+9)) = 6.
Programs
-
JavaScript
p=new Array(0,0,0); for (a=0;a<100;a++) { p[a%3]+=a; document.write(Math.floor(Math.sqrt(p[0]*p[0]+p[1]*p[1]+p[2]*p[2]))+", "); }
Formula
a(n) ~ n^2 sqrt(3)/6. - Charles R Greathouse IV, May 02 2013
Comments