This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213183 #29 May 22 2021 04:30:12 %S A213183 1,1,2,3,2,3,4,5,3,4,5,6,7,4,5,6,7,8,9,5,6,7,8,9,10,11,6,7,8,9,10,11, %T A213183 12,13,7,8,9,10,11,12,13,14,15,8,9,10,11,12,13,14,15,16,17,9,10,11,12, %U A213183 13,14,15,16,17,18,19,10,11,12,13,14,15,16,17,18,19,20,21,11,12 %N A213183 Initialize a(1)=R=1. Repeat: copy the last R preceding terms to current position; increment R; do twice: append the least integer that has not appeared in the sequence yet. %C A213183 Every positive integer k occurs floor((k+3)/2) times: 1 and 2 occur twice, 3 and 4 thrice, 5 and 6 four times, and so on. %e A213183 a(1) = 1 -- initial value %e A213183 a(2) = 1 -- copied one last term %e A213183 a(3)=2, a(4)=3 -- appended two terms %e A213183 a(5)=2, a(6)=3 -- copied two last terms %e A213183 a(7)=4, a(8)=5 -- appended two terms %e A213183 a(9)=3, a(10)=4, a(11)=5 -- copied three last terms %e A213183 a(12)=6, a(13)=7 -- appended two terms %e A213183 a(14)=4, a(15)=5, a(16)=6, a(17)=7 -- copied four last terms %e A213183 a(18)=8, a(19)=9 -- appended two terms, and so on. %e A213183 Comments from _N. J. A. Sloane_, Apr 28 2020, following a suggestion from _Paul Curtz_: (Start) %e A213183 With an initial -1, 0, this may also be regarded as a triangle read by rows: %e A213183 -1; %e A213183 0, 1; %e A213183 1, 2, 3; %e A213183 2, 3, 4, 5; %e A213183 3, 4, 5, 6, 7; %e A213183 4, 5, 6, 7, 8, 9; %e A213183 5, 6, 7, 8, 9, 10, 11; %e A213183 6, 7, 8, 9, 10, 11, 12, 13; %e A213183 ... %e A213183 or as an array read by upward antidiagonals: %e A213183 -1, 1, 3, 5, 7, 9, 11, ... %e A213183 0, 2, 4, 6, 8, 10, ... %e A213183 1, 3, 5, 7, 9, ... %e A213183 2, 4, 6, 8, ... %e A213183 3, 5, 7, ... %e A213183 4, 6, ... %e A213183 5, ... %e A213183 ... %e A213183 (End) %o A213183 (Python) %o A213183 a = [1]*992 %o A213183 R = 1 %o A213183 i = 2 %o A213183 while i<900: %o A213183 for t in range(R): %o A213183 a[i] = a[i-R] %o A213183 i += 1 %o A213183 R += 1 %o A213183 a[i] = a[i-1] + 1 %o A213183 i += 1 %o A213183 a[i] = a[i-1] + 1 %o A213183 i += 1 %o A213183 for i in range(1,99): %o A213183 print(a[i], end=',') %Y A213183 If we prefix this with -1, 0, and then add 1 to every term, we get A051162. %K A213183 nonn,easy,tabf %O A213183 1,3 %A A213183 _Alex Ratushnyak_, Mar 05 2013