cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A213194 First inverse function (numbers of rows) for pairing function A211377.

This page as a plain text file.
%I A213194 #21 Feb 16 2025 08:33:17
%S A213194 1,1,1,2,2,3,1,1,2,2,3,3,4,4,5,1,1,2,2,3,3,4,4,5,5,6,6,7,1,1,2,2,3,3,
%T A213194 4,4,5,5,6,6,7,7,8,8,9,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,1,
%U A213194 1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10
%N A213194 First inverse function (numbers of rows) for pairing function A211377.
%H A213194 Boris Putievskiy, <a href="/A213194/b213194.txt">Rows n = 1..140 of triangle, flattened</a>
%H A213194 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.
%H A213194 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a>
%H A213194 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A213194 a(n) = (3*A002600(n)+A004736(n)-1-(-1)^A002260(n)+A003056(n)*(-1)^A003057(n))/4;
%F A213194 a(n) = (3*i+j-1-(-1)^i+(i+j-2)*(-1)*t)/4, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
%e A213194 The start of the sequence as triangle array read by rows:
%e A213194   1;
%e A213194   1,1;
%e A213194   2,2,3;
%e A213194   1,1,2,2;
%e A213194   3,3,4,4,5;
%e A213194   1,1,2,2,3,3;
%e A213194   4,4,5,5,6,6,7;
%e A213194   1,1,2,2,3,3,4,4;
%e A213194   5,5,6,6,7,7,8,8,9;
%e A213194   1,1,2,2,3,3,4,4,5,5;
%e A213194   . . .
%e A213194 The start of the sequence as array read by rows, the length of row r is 4*r-3.
%e A213194 First 2*r-2 numbers are from the row number 2*r-2 of above triangle array.
%e A213194 Last  2*r-1 numbers are from the row number 2*r-1 of above triangle array.
%e A213194   1;
%e A213194   1,1,2,2,3;
%e A213194   1,1,2,2,3,3,4,4,5;
%e A213194   1,1,2,2,3,3,4,4,5,5,6,6,7;
%e A213194   1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9;
%e A213194   . . .
%e A213194 Row r contains numbers 1,2,3,...2*r-2 repeated twice, row ends 2*r-1.
%o A213194 (Python)
%o A213194 t=int((math.sqrt(8*n-7) - 1)/ 2)
%o A213194 i=n-t*(t+1)/2
%o A213194 j=(t*t+3*t+4)/2-n
%o A213194 result=(3*i+j-1-(-1)**i+(i+j-2)*(-1)**(i+j))/4
%Y A213194 Cf. A211377, A002260, A004736, A003056, A003057.
%K A213194 nonn
%O A213194 1,4
%A A213194 _Boris Putievskiy_, Mar 01 2013