This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213195 #24 Feb 16 2025 08:33:17 %S A213195 1,3,2,1,2,1,5,4,3,4,3,2,1,2,1,7,6,5,6,5,4,3,4,3,2,1,2,1,9,8,7,8,7,6, %T A213195 5,6,5,4,3,4,3,2,1,2,1,11,10,9,10,9,8,7,8,7,6,5,6,5,4,3,4,3,2,1,2,1, %U A213195 13,12,11,12,11,10,9,10,9,8,7,8,7,6,5,6,5,4,3,4,3,2,1,2,1 %N A213195 Second inverse function (of columns) for pairing function A211377. %H A213195 Boris Putievskiy, <a href="/A213195/b213195.txt">Rows n = 1..140 of triangle, flattened</a> %H A213195 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A213195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a> %H A213195 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A213195 See Python program. %e A213195 The start of the sequence as triangle array read by rows: %e A213195 1; %e A213195 3,2; %e A213195 1,2,1; %e A213195 5,4,3,4; %e A213195 3,2,1,2,1; %e A213195 7,6,5,6,5,4; %e A213195 3,4,3,2,1,2,1; %e A213195 . . . %e A213195 The start of the sequence as array read by rows, the length of row r is 4*r-3. %e A213195 First 2*r-2 numbers are from the row number 2*r-2 of above triangle array. %e A213195 Last 2*r-1 numbers are from the row number 2*r-1 of above triangle array. %e A213195 1; %e A213195 3,2,1,2,1; %e A213195 5,4,3,4,3,2,1,2,1; %e A213195 7,6,5,6,5,4,3,4,3,2,1,2,1; %e A213195 ... %e A213195 Row number r is 2*r-1, 2*r-2, 2*r-3, 2*r-2, {row number r-1}. %o A213195 (Python) %o A213195 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A213195 i=n-t*(t+1)/2 %o A213195 j=(t*t+3*t+4)/2-n %o A213195 result=((1+(-1)**i)*((1+(-1)**j)*2*int((j+2)/4)-(-1+(-1)**j)*(2*int((i+4)/4)+2*int(j/2)))-(-1+(-1)**i)*((1+(-1)**j)*(1+2*int(i/4)+2*int(j/2))-(-1+(-1)**j)*(1+2*int(j/4))))/4 %Y A213195 Cf. A211377. %K A213195 nonn,tabl %O A213195 1,2 %A A213195 _Boris Putievskiy_, Mar 01 2013