A216248 T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2-1, if k=1 and (n mod 2)=1; T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2, else. Table T(n,k) read by antidiagonals; n, k > 0.
1, 2, 5, 3, 4, 6, 7, 10, 11, 14, 8, 9, 12, 13, 15, 16, 19, 20, 23, 24, 27, 17, 18, 21, 22, 25, 26, 28, 29, 32, 33, 36, 37, 40, 41, 44, 30, 31, 34, 35, 38, 39, 42, 43, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 66, 67
Offset: 1
Examples
The start of the sequence as table: 1....2...3...7...8..16..17... 5....4..10...9..19..18..32... 6...11..12..20..21..33..34... 14..13..23..22..36..35..53... 15..24..25..37..38..54..55... 27..26..40..39..57..56..78... 28..41..42..58..59..79..80... . . . The start of the sequence as triangular array read by rows: 1; 2,5; 3,4,6; 7,10,11,14; 8,9,12,13,15; 16,19,20,23,24,27; 17,18,21,22,25,26,28; . . . The start of the sequence as array read by rows, the length of row number r is 4*r-3. First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above. Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above. 1; 2,5,3,4,6; 7,10,11,14,8,9,12,13,15; 16,19,20,23,24,27,17,18,21,22,25,26,28; . . . Row number r contains permutation of the 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r: 2*r*r-5*r+4, 2*r*r-5*r+7, ... 2*r*r-r-2, 2*r*r-r.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO]
- Eric W. Weisstein, MathWorld: Pairing functions
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) i=n-t*(t+1)/2 j=(t*t+3*t+4)/2-n result=((t+2)**2-4*j+3-(-1)**j-(t)*(-1)**t)/2 if j==1 and (i%2)==1: result=result-1
Formula
As table
T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2-1, if k=1 and (n mod 2)=1;
T(n,k)=((n+k)^2-4*k+3-(-1)^k-(n+k-2)*(-1)^(n+k))/2, else.
As linear sequence
a(n)=((t+2)^2-4*j+3-(-1)^j-(t)*(-1)^t)/2 -1, if j=1 and (i mod 2)=1;
a(n)=((t+2)^2-4*j+3-(-1)^j-(t)*(-1)^t)/2, else; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Comments