This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213206 #17 Feb 18 2013 07:09:16 %S A213206 1,1,1,3,4,5,6,12,15,20,21,30,60,60,84,105,140,140,210,420,420,420, %T A213206 420,840,840,1260,1260,1540,1540,2520,4620,4620,5460,5460,9240,9240, %U A213206 13860,13860,16380,16380,27720,27720,32760,60060,60060,60060,60060,120120,120120,180180,180180,180180 %N A213206 Largest order of permutation without a 2-cycle of n elements. Equivalently, largest LCM of partitions of n without parts =2. %H A213206 Joerg Arndt, <a href="/A213206/b213206.txt">Table of n, a(n) for n = 0..101</a> %F A213206 a(n) = A000793(n) unless n is a term of A007504 (sum of first primes). %e A213206 The 11 partitions (including those with parts =2) of 6 are the following: %e A213206 [ #] [ partition ] LCM( parts ) %e A213206 [ 1] [ 1 1 1 1 1 1 ] 1 %e A213206 [ 2] [ 1 1 1 1 2 ] 2 %e A213206 [ 3] [ 1 1 1 3 ] 3 %e A213206 [ 4] [ 1 1 2 2 ] 2 %e A213206 [ 5] [ 1 1 4 ] 4 %e A213206 [ 6] [ 1 2 3 ] 6 (max, with a part =2) %e A213206 [ 7] [ 1 5 ] 5 %e A213206 [ 8] [ 2 2 2 ] 2 %e A213206 [ 9] [ 2 4 ] 4 %e A213206 [10] [ 3 3 ] 3 %e A213206 [11] [ 6 ] 6 (max, without a part =2) %e A213206 The largest order 6 is obtained twice, the first such partition is forbidden for this sequence, but not the second, so a(6) = A000793(6) = 6. %e A213206 The 7 partitions (including those with parts =2) of 5 are the following: %e A213206 [ #] [ partition ] LCM( parts ) %e A213206 [ 1] [ 1 1 1 1 1 ] 1 %e A213206 [ 2] [ 1 1 1 2 ] 2 %e A213206 [ 3] [ 1 1 3 ] 3 %e A213206 [ 4] [ 1 2 2 ] 2 %e A213206 [ 5] [ 1 4 ] 4 %e A213206 [ 6] [ 2 3 ] 6 (max with a part =2) %e A213206 [ 7] [ 5 ] 5 (max, without a part =2) %e A213206 The largest order (A000793(5)=6) with a part =2 is obtained with the partition into distinct primes; the largest order without a part =2 is a(5)=5. %K A213206 nonn %O A213206 0,4 %A A213206 _Joerg Arndt_, Feb 15 2013