This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213211 #14 Mar 12 2013 09:50:48 %S A213211 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,2,3,4,1,1,1,1,3,3,4,5,1, %T A213211 1,1,1,3,6,4,5,6,1,1,1,1,3,6,10,5,6,7,1,1,1,1,4,6,10,15,6,7,8,1,1,1,1, %U A213211 4,10,10,15,21,7,8,9,1,1,1,1,4,10,20,15,21,28,8,9,10,1,1,1 %N A213211 Triangular array read by rows: T(n,k) is the number of size k subsets of {1,2,...,n} such that (when the elements are arranged in increasing order) the smallest element is congruent to 1 mod 3 and the difference of every pair of successive elements is also congruent to 1 mod 3. %C A213211 Row sums are A000930. %D A213211 Combinatorial Enumeration, I. Goulden and D. Jackson, John Wiley and Sons, 1983, page 56. %H A213211 Alois P. Heinz, <a href="/A213211/b213211.txt">Rows n = 0..140, flattened</a> %F A213211 G.f.: (1 + x + x^2)/(1 - x^3 - y*x). %F A213211 T(n,k) = C(k+floor((n-k)/3),k). - _Alois P. Heinz_, Mar 02 2013 %e A213211 T(6,3) = 4 because we have: {1,2,3}, {1,2,6}, {1,5,6}, {4,5,6}. %e A213211 1; %e A213211 1, 1; %e A213211 1, 1, 1; %e A213211 1, 1, 1, 1; %e A213211 1, 2, 1, 1, 1; %e A213211 1, 2, 3, 1, 1, 1; %e A213211 1, 2, 3, 4, 1, 1, 1; %e A213211 1, 3, 3, 4, 5, 1, 1, 1; %e A213211 1, 3, 6, 4, 5, 6, 1, 1, 1; %e A213211 1, 3, 6, 10, 5, 6, 7, 1, 1, 1; %e A213211 1, 4, 6, 10, 15, 6, 7, 8, 1, 1, 1; %p A213211 T:= (n, k)-> binomial(k+floor((n-k)/3), k): %p A213211 seq(seq(T(n,k), k=0..n), n=0..14); # _Alois P. Heinz_, Mar 02 2013 %t A213211 nn=10;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[ (1+x+x^2)/(1-x^3-y x),{x,0,nn}],{x,y}]]//Grid %Y A213211 Cf. A046854. %K A213211 nonn,tabl %O A213211 0,12 %A A213211 _Geoffrey Critzer_, Mar 02 2013