This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A213215 #21 Dec 27 2021 10:36:57 %S A213215 1,3,7,15,27,27,127,255,511,1023,1819,4095,4255,16383,32767,65535, %T A213215 77671,262143,459759,1048575,2097151,4194303,7456539,16777215, %U A213215 33554431,67108863,125687199,125687199,125687199,1073741823,2147483647,4294967295,8589934591,17179869183 %N A213215 For the Collatz (3x+1) iterations starting with the odd numbers k, a(n) is the smallest k such that the trajectory contains at least n successive odd numbers == 3 (mod 4). %C A213215 The count of odd numbers includes the starting number n if it is part of the longest chain of odd numbers in the sequence. %C A213215 The sequence is infinite because the Collatz trajectory starting at k = 2^n - 1 contains at least n consecutive odd numbers == 3 (mod 4) such that 3*2^n - 1 -> 3^2*2^(n-1)-1 -> ... -> 2*3^(n-1)-1 and then -> 3^n-1 -> ... but the numbers of this sequence are not always of this form, for example 27, 1819, 4255, 77671, 459759, ... %C A213215 Equivalently, a(n) is the smallest k such that the Collatz sequence for k suffers at least n consecutive (3x+1)/2 operations (i.e., no consecutive divisions by 2). - _Kevin P. Thompson_, Dec 15 2021 %H A213215 Kevin P. Thompson, <a href="/A213215/b213215.txt">Table of n, a(n) for n = 1..36</a> %e A213215 a(4)=15 because the Collatz sequence for 15 (15, 46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1) is the first Collatz sequence to contain 4 consecutive odd numbers congruent to 3 (mod 4): 15, 23, 35, and 53. %p A213215 nn:=200:T:=array(1..nn): %p A213215 for n from 1 to 20 do:jj:=0: %p A213215 for m from 3 by 2 to 10^8 while(jj=0) do: %p A213215 for i from 1 to nn while(jj=0) do: %p A213215 T[i]:=0:od:a:=1:T[1]:=m:x:=m: %p A213215 for it from 1 to 100 while (x>1) do: %p A213215 if irem(x,2)=0 then %p A213215 x := x/2:a:=a+1:T[a]:=x: %p A213215 else %p A213215 x := 3*x+1: a := a+1: T[a]:=x: %p A213215 fi: %p A213215 od: %p A213215 jj:=0:aa:=a: %p A213215 for j from 1 to aa while(jj=0) do: %p A213215 if irem(T[j],4)=3 then %p A213215 T[j]:=1: %p A213215 else %p A213215 T[j]:=0: %p A213215 fi: %p A213215 od: %p A213215 for p from 0 to aa-1 while (jj=0) do: %p A213215 s:=sum(T[p+k],k=1..2*n): %p A213215 if s=n then %p A213215 jj:=1: printf ( "%d %d \n",n,m): %p A213215 else %p A213215 fi: %p A213215 od: %p A213215 od: %p A213215 od: %t A213215 Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; countThrees[t_] := Module[{mx = 0, cnt = 0, i = 0}, While[i < Length[t], i++; If[t[[i]] == 3, cnt++; i++, If[cnt > mx, mx = cnt]; cnt = 0]]; mx]; nn = 15; t = Table[0, {nn}]; n = 1; While[Min[t] == 0, n = n + 2; c = countThrees[Mod[Collatz[n], 4]]; If[c <= nn && t[[c]] == 0, t[[c]] = n; Do[If[t[[i]] == 0, t[[i]] = n], {i, c}]]]; t (* _T. D. Noe_, Mar 02 2013 *) %Y A213215 Cf. A006370, A006577, A000225, A024023, A213214. %Y A213215 Cf. A222598 (similar). %K A213215 nonn %O A213215 1,2 %A A213215 _Michel Lagneau_, Mar 02 2013 %E A213215 Definition clarified, a(1) inserted, and a(21)-a(34) added by _Kevin P. Thompson_, Dec 15 2021